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Abstract

Despite the huge progress achieved recently by means of the corrector for aberrations, allowing now a
true atomic resolution of 0.1 nm, hence making it an unrivalled tool for nanoscience, transmission
electron microscopy (TEM) suffers from a severe drawback: in a conventional electron micrograph
only a poor phase contrast can be achieved, i.e. phase structures are virtually invisible. Therefore,
conventional TEM is nearly blind for electric and magnetic fields, which are pure phase objects. Since
such fields provoked by the atomic structure, e.g. of semiconductors and ferroelectrics, largely
determine the solid state properties, hence the importance for high technology applications,
substantial object information is missing.

Electron holography in TEM offers the solution: by superposition with a coherent reference wave, a
hologram is recorded, from which the image wave can be completely reconstructed by amplitude and
phase. Now the object is displayed quantitatively in two separate images: one representing the
amplitude, the other the phase. From the phase image, electric and magnetic fields can be determined
quantitatively in the range from micrometre down to atomic dimensions by all wave optical methods
that one can think of, both in real space and in Fourier space.

Electron holography is pure wave optics. Therefore, we discuss the basics of coherence and
interference, the implementation into a TEM, the path of rays for recording holograms as well as the
limits in lateral and signal resolution. We outline the methods of reconstructing the wave by numerical
image processing and procedures for extracting the object properties of interest. Furthermore, we
present a broad spectrum of applications both at mesoscopic and atomic dimensions.

This paper gives an overview of the state of the art pointing at the needs for further development. It is
also meant as encouragement for those who refrain from holography, thinking that it can only be
performed by specialists in highly specialized laboratories. In fact, a modern TEM built for atomic
resolution and equipped with a field emitter or a Schottky emitter, well aligned by a skilled operator,
can deliver good holograms. Running commercially available image processing software and
mathematics programs on a laptop-computer is sufficient for reconstruction of the amplitude and
phase images and extracting desirable object information.

(Some figures in this article are in colour only in the electronic version)

This article was invited by Professor J C H Spence.
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1. Introduction

The macroscopic properties of materials, such as conductivity,
optical transparency, or mechanical brittleness, are finally
determined by the materials structure on an atomic scale.
Consequently, for understanding and tailoring materials, solid
state physics and materials science aim at setting up structure—
properties relations. For this, the structure has to be analyzed
with respect to the following questions:

e Where are the atoms?

e Which atoms are where?

e What are the bonds?

e Which mechanic/electric/magnetic fields are around?
e What are the potentials?

There are a variety of methods, which may answer some of
these questions:

Scanning tunneling microscopy (STM) and its derivatives,
such as atomic force microscopy (AFM), magnetic force
microscopy (MFM) and others, allow analysis with respect
to nearly all the questions raised above, however, only of the
surface structure.

For the interior structure, diffraction methods using x-rays
or neutrons, play an essential role; however, in the diffraction
pattern one finds the object information averaged over an
illuminated area of about 1 um; a true local resolution in the
range of 1 nm or below is not possible, because the phases in
Fourier space cannot be determined from a diffraction pattern
(‘phase problem of diffraction’).

The most powerful methods for analyzing interior struc-
tures at subnanometre resolution are those of transmission elec-
tron microscopy (TEM). In particular since the development
of aberration correctors, modern TEM allows access to atomic
structures at a resolution of 0.1 nm. However, the intensity
recorded in a conventional electron image only represents the
squared modulus of the electron image wave; the phase of
the image wave is lost. This phase loss means a loss of sub-
stantial object information, because most object properties are
encoded in the phase of the transmitted electron wave. Loosely
speaking, conventional TEM is blind to these object proper-
ties, e.g. electric or magnetic fields in the specimen. Since the
phase can only be detected by interferometric means, electron

holography has paved the way for a comprehensive analysis of
nearly all object properties at medium and at atomic resolution.
In this paper, the basics, applications and performance limits
of electron holography are outlined.

2. Electron waves

Electrons have particle properties.  Taking account of
relativistic effects, the momentum of an electron accelerated by
a nominal voltage U,, in space free from electric or magnetic
fields, is given by

2.1

p =+/2emoU},

with the rest mass m( and the amount of charge e of the electron.

Ur =, (14222
e 2mgc?

is the relativistically modified acceleration voltage with c the
velocity of light [1,2].

The total energy in an area with electric potential V is
given as

2.2)

E = Ekin —eV. (23)

Please note that for an electron the potential energy is —eV,
i.e. it is negative in a positive potential V. Therefore, the
momentum follows as

p =+/2emo(Uy, + V)*. 24
Electrons have wave properties. The non-relativistic wave
equation for their wave function v is the Schrodinger equation

[L(_m Ved) - eV] V=Ey (25

mo

with electron rest mass m, and magnetic vector potential A h
is Planck’s constant.

For relativistic electrons, the wave vector follows from the
(relativistic) Klein—Gordon equation as

J2emy(U, + V)* e i
h T h

k= (2.6)
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with e » the unit vector in the momentum direction. In the
following, the nominal wavenumber ky = /2emoU}/h is

used. The corresponding wavelength for A = 0 is the de
Broglie-wavelength
h
A= —. 2.7
p
For example, for electrons accelerated by U, = 100kV, the

wavelength amounts to A = 3.7 pm, which is much smaller
than atomic structures in solids. This is the main reason why
electron microscopy is so successful.
Assume for the beginning field free space with V' = 0 and
= 0. Then the most simple solution of the wave equation is
a plane wave of amplitude a, described by means of

U (F, 1) = aexp(iQr koF + ¢ — wt)) 2.8)

with the wave vector l;o of modulus ky = |I;0| = 1/, pointing
in the direction of the electron momentum p = hky, and a
phase ¢. The frequency w is given by the total energy by
means of the Einstein relation £ = hw withh = h/27.

2.1. Electron interference

Interference is the most prominent peculiarity of waves and
the very basis of wave optics. Therefore, electron interference
is a fundamental phenomenon, e.g. in quantum physics, solid
state physics and electron wave optics.

The description of electron interference is virtually the
same as of the more familiar light interference. Two coherent
waves Yi2(F, 1) = ai2exp(iQukiaf + @12 — wiah)),
superimposed on each other, result in the wave v + v,, which

again is a solution of the underlying wave equation. The
intensity distribution is
I(r, 1) = (Y1 +¥2) (Y1 + ¥2)™ (2.9)

with ¢ meaning the complex conjugate of .

The simplest case is the one of two plane waves with
|k1| = |k2| = ko hence |a)1| = |a)2| superimposed at an angle;
further on, V = 0 and A = 0 is assumed in the following.
Introducing a coordinate system such that k; = (ky, 0, k;) and
122 = (—ky, 0, k;), the intensity distribution follows as

(2.10)

In addition to the sum of the single intensities a12 and a%, it
contains cosinoidal interference fringes with the carrier spatial
frequency g. = 2k,, which are shifted aside by the phase
difference A = @1 — ¢>. Please note that, because of plane
waves with |k1| |k2| and |wi| = |w,|, the intensity is
independent from z and ¢. With respect to the sum of the single
intensities, which would result from incoherent superposition,
interference induces a local redistribution of the intensity. In
any case because fo /e cos(2rg.x)dx = 0, the total intensity
al + a2 (i.e. particle number) is conserved.

For detection of the interference pattern, the fringe
contrast is much more essential than the intensity: at weak
intensities, which often show up at the needed coherent
illumination, long exposure times can help much, however,
a poor contrast cannot be healed. In electron microscopy, the

[(x,y) = I(x) = a} + a3 +2a,a; cos(27 gx + Ag).

electron source

biprism

b filament on voltageU;
', intensity
detector interference

—

/9¢
fringe spacing

Figure 1. Electron biprism interferometer. The wave front emitted
from the source is split by the biprism filament. Due to the positive
filament voltage, the two waves passing on the right and the left are
deflected by an angle y and towards each other and hence
superimpose in the detector plane. There, a cosinoidal interference
pattern arises.

contrast in a point 7 is usually defined as |Iy — I (¥)|/Iy with
Iy the vacuum intensity. Instead, here we use the definition of
contrast

I min

C = Imax -

= —— 2.11
Imax +Imin ( )

with I, and Iy, meaning two adjacent maximum and
minimum intensities, respectively. C is normalized, i.e. 0 <
C < 1. In the above case we obtain C = (2a1a2)/(a? +a3),
which is only optimal, i.e. C = 1, if the amplitudes are tuned
equal as a; = ap. Later on it will be shown that also lack of
coherence and experimental disturbances reduce the contrast.
For a; = a, and with Iy = a?, we can finally write

I(x,y) =2Iy(1 +cosmg.x + Ap)). (2.10a)

The Mollenstedt electron biprism. The ingeniously simple
device for superposition of electron waves is the electron
biprism. Gottfried Mollenstedt and his PhD student Heinrich
Diiker [3] invented the electron biprism as an electron optical
analog of the Fresnel biprism in light optics. The electron
biprism consists of a metalized quartz filament of about 0.5 um
¢, at which a positive voltage Ur of several Volts is applied.
It splits the wave front of an incoming electron wave into two
coherent partial waves passing the filament on the right and left;
in addition, it deflects the split waves by an angle y = yy Us
towards each other and hence superimposes them in an area
downstream (figure 1). The biprism is an ideal beam-splitter
in that the deflection angle y does not depend on the lateral
distance from the filament, meaning that the two wave fronts
do not suffer a distortion under deflection.

The resulting interference pattern depends on the simple
geometry of the setup: in the detection plane at a distance
b downstream, the two waves overlap at an angle 8 =
2(a/(a + b))y easily controllable with y by means of the
biprism voltage U;. Because y, and hence , is very small,
only some 10~ rad, the carrier spatial frequency is given by
q. = 2k sin(B/2) ~ kof. Evidently, the fringe spacing
1 a+b

§=—

=477 2.12)
qgc  2koayoUs
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Figure 2. Electron interferograms for increasing biprism voltage. With increasing filament voltage Uy, the two waves overlap at an
increasing width, and simultaneously the fringe spacing becomes smaller.

in the detector plane can simply be controlled by the biprism
voltage Us. The upper limit of spacing is given by the width
of the shadow thrown by the filament in the observation plane,
which requires a certain minimum y to achieve superposition.
With increasing Us, the overlapping width also increases
according to
a+b

a

w = 2byUs — 27 2.13)

with the radius r¢ of the biprism filament; the second term is
the width of the shadow thrown by the filament in the detector
plane. Evidently, with increasing Uy, the fringe spacing
shrinks, while the interference field becomes broader. This
can be observed in figure 2.

Interference experiments with single electrons. 1If we
consider a point-like and monochromatic source, subsequently
emitted electrons start with random phases; nevertheless, they
form spatially well-defined wave-fronts of identical shape.
Superimposing the same parts of each wave, the random phases
drop out. Therefore, and because of the same geometry for
all waves, one obtains the same interference pattern for each
electron

I(x,y) =211 +cos2m g.x)), (2.14)

which shows an ideal contrast C = 1. Therefore, summing
over many electrons yields the same intensity distribution. The
hypothesis that we are dealing with waves of single electrons
is strongly supported by the experimental evidence for single

particle interference (figure 3). At a very small electron
current such that only a few electrons arrive at the detector
per exposure time, one finds only well-localized flashes at the
impact position of each arriving electron: a single electron
does not appear as a wave spread in the whole detector
plane. Instead, it behaves like a particle, however different
from a classical (deterministic) particle. The associated wave
is—according to the Copenhagen-interpretation of quantum
mechanics—a probability wave with an intensity describing
the probability of finding an electron at a given position. The
experiment further shows that interference is not based upon
mutual interaction of the electrons. The time of flight of about
1078 s between emitter and detector is much shorter than the
average time distance of about 1073 s between two subsequent
impacts on the detector. This means that, when one electron
hits the screen, the one to come next is still in the conduction
band of the emitter about 1 m away. Since all the waves look
the same and hence represent the same probability distribution,
the electrons fill the common probability distribution with
an increasing number of events building up the detectable
interference pattern. In this sense, the electrons from a
monochromatic point-source are called coherent.

Spin polarization is not considered here. The randomly
spin-polarized electrons emitted from the usual source interfere
in the sense of single-particle interference always with the same
spin-state. Therefore, spin does not affect the appearance of
the interference pattern, as long as, on the path from the source
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10s

exposure time

60s

Figure 3. Single electron interference. At very short exposure
times, seemingly stochastic impacts of single electrons are found.
With increasing exposure time, this shot noise adds up forming a
cosinusoidal interference pattern. Since the time of flight of the
electrons is five orders of magnitude smaller than the time distance
between two impacts, at any one time only a single electron is
present in the interferometer.

to the detector, there are no spin-flip processes involved in one
wave with respect to the other one. Therefore, spin effects
are not yet observed and dedicated experiments changing
spin have not yet been performed. However, effects of spin
dependence such as those described in [4] promise a very
interesting future extension of holography also in this direction.

2.2. Coherence of electrons

In reality, a theoretically possible point-like and monochro-
matic source would be useless, because it would not emit
any electrons; otherwise, the current density at the emitter
would be infinite. Consequently, experimentally we always
deal with extended polychromatic electron sources. It is gen-
erally assumed that an extended and polychromatic electron
source is an incoherent source in that electrons emitted from
different points or with different energies do not show any
detectable phase relation; therefore, they have to be summed
up incoherently, i.e. by intensities.

In the following, the description of coherence is outlined
at the example of the electron biprism; this description is
analogous to the description in light optics for non-laser light,
as given in detail, for example, in [5].

Spatial coherence. Spatial coherence of a wave field is
determined by the local structure of the issuing source. If,
rather than point-like, the source is extended in the £-direction
parallel to x, and in the n-direction parallel to y, it can be
described by the distribution functioni(§, ), which is assumed
normalized by

f i, n)dndé = 1. (2.15)

i) .
source i: | N
Vi d
P i
biprism 0
a
1(x)
M
T X
interference — ] l—
€

Figure 4. Spatial coherence from an extended source. Each
point-like element of the source produces an interference pattern of
contrast, C = 1, with a corresponding intensity and lateral phase €.
Summing incoherently over all source elements results in an
interference pattern with reduced contrast |*°| and averaged phase
%, || exp(ie*) is the degree of spatial coherence.

In the observation plane, it gives rise to the intensity /.
Each point-like source element i(&, ) dn d€ contributes
with an interference pattern

dI(x, y) = 21i(§, ) (1 + cos(2mqcx +£(§))) dnd§,

(2.16)
which again shows the contrast C = 1 (figure 4). The lateral
phase (&) describes a lateral shift of the interference fringes
corresponding to the considered source point coordinate
&, which is assumed parallel to the x-coordinate in the
interference pattern; the source coordinate 1 has no influence,
since it is oriented parallel to the fringes. = Summing
up incoherently, i.e. by intensities, yields the resulting
interference pattern

i(§, n) (1 +cos2rgex +(§))) dndé

2.17)
and, because of the normalization of i(€, 1), one gets

ey =20 (14 [ ([ an) cosmgor + 660 ).
& \Jn

(2.18)

This can be written again as a simple cosinoidal fringe pattern,

which, however, is damped in contrast by [*| and shifted
aside by a phase &%

I(x,y) = 210f

source

I(x,y) =2l (1 +|u*|cosmgex +°)). (2.19)
w5 = || exp(ie*°) is called the degree of spatial coherence.
By comparison one finds
TS / (/ (&, n) dn) exp(ie(§)) d§. (2.20)
& n

Inserting €(§) = 2w q.(b/a)§ and g. = koS, one gets

ue = / (/i(é, n) dn) exp(i2m koa§) d& (2.21)
& \Jn
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with « = (b/a)p the angle at the source subtended by two
respective waves superimposed subsequently at the angle S
(figure 1).

This result gives the degree of spatial coherence between
two points with the same y-coordinate in the detector plane,
as seen from the incoherent source at an angle «: it is given
by the Fourier-transform of the source projected on the &-
and x-coordinate, i.e. in the direction parallel to the fringes.
Because it depends on the angle «, it is also called angular
coherence.

Up to now, the two points considered have the same
y-coordinate, and therefore their mutual coherence is given
by the Fourier transform of the source projected on the x-
direction. The generalization of two points with arbitrary y-
coordinates is straightforward using the 2D-Fourier-transform
of the source i(€, 1) and the slice theorem. This theorem says
that the correspondingly oriented slice through the origin of
Fourier space gives the Fourier-transform of the respective
projection in real space.

Therefore

@) = / / (&, m) exp(i2 ko(ed +aym)) dnde (2.22)
&Jn

is the general spatial coherence function of a monochromatic
wave-field, emitted from the incoherent source i(&,n). It
depends on the angular distance @ = (ay, ay) of the two
considered points in a plane, as seen from the source at a large
distance (van Cittert-Zernike theorem).

The well-known condition for spatial coherence can easily
be derived: assuming a slit source of full width ss, the Fourier
transform is proportional to sin(mwkoo ss)/mkoa ss with o
perpendicular to the slit. At the first zero, one finds wkoo ss =
7, and therefore the coherence requirement reads as ss - << A.

Temporal or longitudinal coherence. In a similar way, the
effect of the non-monochromaticity of the source can be
treated. For this, a point-like, polychromatic source emitting
a spectrum s (k)of wave numbers k is considered. Now, the
interference patterns obtained for different wave numbers have
to be summed incoherently. Thereby, a temporal coherence
function

wen) = / s(k) exp(i2mk n/kgy) de (2.23)
results, where n is the order of interference; x = k — ky means
the spectrum coordinate relative to the nominal wave number
ko = /2emoU}/h, with the assumption k << ko usually
satisfied.

Again, the well-known description of longitudinal
coherence can easily be derived. Let us assume a
rectangular energy distribution with half width of AE
around the nominal energy eU,. Then, aside from a
relativistic factor in the order of 1, Ak/ky = AE/(2eU,)
follows as half width of the corresponding distribution
of the wave numbers. The Fourier transform results in
uc(n) o sin2mw n Ak/ky)/(2m n Ak/kgy) with the first zero
atn Ak/ko = 1/2. Therefore, the total number of visible
fringes (i.e. including both sides from zero order) follows as
2n = (2eU,)/AE, and the usual coherence length as L = 2nA.

The energy width of usual electron beams of only about
1 eV gives amaximum possible order 2n ~ 10° of interference
[6]. Therefore, for interference experiments and holography,
which use 27 < 1000 at most, temporal coherence does not
impose any restriction.

Total degree of coherence. The total degree of coherence
w(a, n) of a wave-field issued from a source given by i(&, n; k)
is difficult to determine in general. If, however, every point of
the source emits the same spectrum s (k) of wave-numbers, an
interference pattern

I(x,y) =211 + |pu(@, n)| cos2m gex + &) (2.24)
with the factorized degree of coherence
(@, n) = p* (@) (n) (2.25)

results. This is assumed to hold for usual electron sources.

Electron current in the coherently illuminated area. The
decisive figure of merit for coherent experiments is the electron
current available at a certain degree of coherence. Assuming
a rotational Gaussian distribution of radius p

. 1 P\’
i(p) = exp | — (—) (2.26)
VT g ( Pg
the degree of spatial coherence is given by
15 (@) = exp(—(koapg)*) (2.27)

This is related to the axial brightness of an electron emitter

defined as
1

B:i=—,

AQ

which is the current per emitting area and solid angle. Setting
for a Gaussian source the emitting area A = 7 pé and the

(2.28)

solid angle = mwa?, the brightness can be combined with the
respective degree of coherence, giving

B

Looh (1) = = In(|1**]) —.
ko

(2.29)
Thus the coherent current available at a given degree of spatial
coherence is simply given by the ‘reduced brightness’ B/kZ
of the electron source. Since the brightness increases linearly
with the accelerating voltage U}, and since kg = 2emoU}/ h?,
the reduced brightness and hence the coherent current are a
mere property of the emitter, independent from U’

Distribution of the coherent current: elliptic illumination.
The total coherent current is an optical invariant, which cannot
be improved (enhanced) by optical methods such as focussing
the beam; the invariance is a consequence of the ‘Abbe
sine condition’ saying here that the product A2 is invariant
under imaging. Nevertheless, the total coherent current can
be distributed in the object plane according to the special
needs; here, a wide coherence area is needed only in the
direction perpendicular to the interference fringes, whereas
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in the direction parallel to the fringes it may be significantly
smaller. Consequently, the coherently illuminated area in
the object need not be circular. It is much more favourable
to produce, by means of cylinder optics, a coherent ellipse
instead: the long axis agrees with the circle diameter in the x-
direction, in the y-direction; however, it is shrunk by a factor ¢.
Then the current density in the interference plane increases by
the factor ¢ without reduction of interference contrast. Usually,
¢ ~ 10 brings a huge experimental improvement.

Farticles and waves. The first zero of the sin(mw ka ss)/
(7w ka ss)-function, which is the Fourier transform of a
rectangular source of width ss, is found at ss-« = A. From this
degree of spatial coherence, as a rule of thumb for experiments,
the familiar condition of spatial coherence
Ss-o <K A (2.30)
can be derived. It means that, in order to see interference
phenomena, i.e. to observe electrons as waves, the product
of source size ss and angular distance o of subsequently
superimposed points must be much smaller than the
wavelength A.
On the other side, the Heisenberg relation, e.g. in the
x-direction

ApxAx > h/2w 2.31)

can be translated with Ax = ss/2 and Ap, = pa/2 into

ss-o = 40/2n (2.32)
saying that, in order to predict the position of detection of an
electron, the product ss - « has to be larger than about the
corresponding wavelength.

Evidently, ss - « gives a figure allowing to decide whether
the particle or wave property of electrons can be observed:
coherence means non-localizability, whereas localizability in
the sense of Heisenberg means incoherence. Consequently, at
coherent illumination, one must sum coherently over all paths
about which there is uncertainty, i.e. about the corresponding
phase space volume.

2.3. Elastic interaction with electric and magnetic fields

From the Schrodinger and the Klein-Gordon equation,
respectively, in an area with electric potential V and a magnetic
vector potential A, the wave vector reads as

2emo(U, + V)* e -

k= A €, — EA' (2.33)
Consequently, the eikonal is given as
=27 / kds (2.34)
path

Sremo U= U, + V)" L
— o emOa/ (Wa + )ds—ZnE/Ads
h Uz I

(2.35)

source

detector

Figure 5. Phase shift of electron waves. On their different paths
pathy and path,, the two waves collect an electric phase difference
due to the difference of the electric potentials V; ;. A magnetic
phase difference arises by the magnetic flux ®,,,, enclosed by the
two paths.

With the wave number

2emoU¥
kg = —— (2.36)

h

in field-free space, one finally gets for the phase compared with

vacuum
<p=2nhiU/Vds—2n%fAd§,

where v means the electron velocity.
Comparing in an interferometer two different paths
through space (figure 5), one finds a phase difference

(2.37)

e
Ap =0 (Vprojl - Vpron) - 2T[Zq)mag (2.33)
with the interaction constant
=27 —, 2.39
o T P ( )
the ‘projected potential’
Vae) = [ Veowads  @40)
path 1,2
and
P pnag =/ AdE—/ Ads =7§ Ads (241
pathl path2 pathl-path2

which, according to Stoke’s integral theorem, is the magnetic
flux embraced by the closed loop formed by path 1 and path 2.
The result can be written as

A@ = A@el + Amag (2.42)
with the electric phase shift
A@er = 0 (Vorojt — Viroj2) (2.43)
and the magnetic phase shift
Amag = —27 = P (2.44)

h
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screening

1“

interference pattern

40000

Figure 6. Measurement of electric phase shift and coherence length.
One of the split waves is guided through a screened, metallic tube, to
which an electric potential V with respect to ground can be applied.
Phase shift measured versus V was found in very good agreement
with theory. At very large phase shifts, the decay of contrast with the
order of interference allows the coherence length to be measured: at
a phase shift of 70 000 - 277, contrast disappears. This corresponds
to a coherence length of 260 nm for 100 keV electrons. From [6].

Electric phase shift. The principle of the electric phase
shift was studied in a special experiment [6]. In a biprism
interferometer, only one of the two waves was guided through
a metallic tube with an electric potential variable with
respect to ground (figure 6). The corresponding phase shift,
observed by means of the corresponding lateral shift of the
interference fringes, was found in excellent agreement with
equation (2.43). Furthermore, this experiment was extended
for the measurement of the coherence length by producing very
high phase shifts and measuring the decay of contrast.

Electric phase shift by solids. The most elementary electric
field in solid state physics is the Coulomb field between the
nucleus and the electron cloud in an atom. For calculation of
the phase shift of the electron wave by a single atom, the atomic
potential distribution Vi (x, v, z) has to be modeled. The

o1[A

\\ :
0.01 =
L + :b-\-‘_____' Hartree-Byatt
2n  —— - I
0.001 : e
0.0001 | L]
' Wentzel ————
0 0.02 0.04 0.06 0.08 0.1
r (nm)

Figure 7. Phase shift by Coulomb potential of atoms. The
calculations for a Ge-atom using the Hartree—Byatt model of atomic
potentials shows a phase shift, which is peaked in the close vicinity
of the nucleus and decays very rapidly with distance. The Wentzel
model, only appropriate for very light atoms, gives even smaller
phase shifts for Ge.

most simple model is given by the Wentzel distribution, which
is valid particularly well for light atoms; the more general
Hartree—Byatt model [7] gives a better accuracy especially for
heavier atoms. Figure 7 reveals that the phase shift decays
very rapidly with the distance from the nucleus such that at
the atomic radius of 0.05 nm it is hardly detectable. Indeed,
an atom looks like a sharply peaked point object, which, for a
resolution worse than 0.1 nm, can roughly be visualized by a
delta-function.

Scaling of atomic phase shift with atomic number. In general,
the phase shift of atoms increases with the atomic number
Z. Unfortunately, there is no simple scaling law because
the shape of the electron clouds and hence the shape of the
atomic potential changes with Z. By numerical evaluation
one finds that there is a coarse dependence for the peak value
Qatom X Z%0 [8]. A more detailed analysis, however, shows a
fine structure in that the atomic phase shift strongly depends
also on the electron orbits; this may lead to the effect that
sometimes increasing Z means even a reduction of the phase
shift [9] (figure 8).

Mean inner potential. 1In a simple interferometer setup not
combined with high-resolution imaging, the phase shift of
single atoms cannot be observed, because it is blurred by
diffraction in the distant detection plane. Nevertheless,
there remains a phase shift detectable from the large area
modulation; if the object is amorphous or tilted well away from
zone-axis orientation, the phase shift is given by the mean inner
potential (MIP) of the material, defined as

1
MIP .= —
vol Jyo

Vatom (%, ¥, 2) dx dy dz (2.45)

integrated over the object volume vol (figure 9). For example,
MIP = 12V for silicon. Since the atomic potential
Vatom (X, ¥, 2) is always larger than zero in vacuum, the same
holds for MIP meaning that electrons are always faster in a
material than in vacuum; therefore, the wavelength is shorter
and hence the corresponding phase shiftis always positive. The
interferometric measurement of mean inner potentials was one
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Figure 8. Phase shift of single atoms vs. atomic number Z. Top:
schematic image phase distribution produced by an atom at limited
resolution. The peak value @, is roughly proportional to Z%° with
atomic number Z. bottom: fine structure found by simulation (full
lines) in comparison with Z%¢ (broken lines). Evidently, the
electron orbitals have a strong influence. The signal strongly
increases with resolution improving from 0.2 to 0.05 nm. From [9].

Atomic distance —

.

Mean
Inner ——*
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Figure 9. Mean inner potential. When the atomic structure is not
resolved in an electron interferometer, one finds a phase shift
corresponding to a potential, which is averaged about the potential
of many atoms. This is called the mean inner potential. Adapted
from [1].

of the first applications of the electron biprism interferometer
realized by Mollenstedt and co-workers [10], as shown in
figure 10. However, interpretation and calculation of the mean
inner potential is a highly sophisticated task, because it is
strongly influenced by size effects, bonding between the atomic
constituents and valence electron densities in the object [11].
Therefore, accurate holographic measurements of the mean
inner potential could also answer these basic questions raised
in solid state physics.

Magnetic phase shift. The magnetic phase shift

e
AQmag = =21 zQDmag (2.46)

mean inner potential to be determined. From [10].

depends solely on the magnetic flux ®n,, enclosed between
the two trajectories superimposed in a point of the interference
pattern. It is interesting to note that the magnetic phase shift

1. does not offer any means to measure the magnetic vector
potential A. Also here, as in classical electrodynamics, A
only plays the role of a transient quantity for calculation;
it does not show up in any measurable result.

2. does not require that the electrons experience a Lorentz
force, i.e. that a B-field is present at the trajectories. This
is discussed as the Ehrenberg—Siday—Aharonov—Bohm
effect in the following section.

3. does not depend on the energy of the electrons, if the
trajectories run through field free space. Therefore, in
contrast to the electric phase shift, it is not dispersive and
does not increase the order of interference and hence does
not allow to measure the coherence length of the electron
wave to be measured by large magnetic phase shifts.

Ehrenberg—Siday—-Aharonov—-Bohm effect. Phase shift of
electrons by the enclosed magnetic flux ®,,,, without classical
interaction with a B-field, was predicted by Ehrenberg and
Siday [12] as well as by Aharonov and Bohm [13]. Therefore,
we name it the ESAB-effect. It was experimentally verified
by Chambers [14], inserting a thin magnetic iron whisker
between the two waves. An even more striking experiment
was performed by Mollenstedt and Bayh [15], who, by means
of three biprisms, guided the two electron waves at the
comparably large mutual distance of about 60 pm; hereby they
attained sufficient space between the waves to insert a micro-
coil (figure 11). Changing the current through the coil, they
found the predicted phase shift in the interference pattern of the
two waves enclosing the flux. From their record in figure 11
one also finds the proof that the electrons did not experience
any magnetic force in that the Fresnel fringes stay unchanged;
since the Fresnel fringes occur from interference of waves
diffracted at the first biprism, propagating to the detector along
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3 biprisms

source

interference
pattern

Il

N4

Fresnel fringes

microcoil

Figure 11. Magnetic phase shift due to an enclosed magnetic flux (ESAB-effect). Left: by means of 3 biprisms, the two coherent electron
waves are guided around a microcoil at some distance. To prevent magnetic stray-fields from leaking out to the waves, a yoke short-circuits
the magnetic flux. Right: the interference pattern is dynamically recorded, i.e. the white arrow shows time. The cos-fringe position (centre)
is shifted aside with increase of current through the microcoil showing the magnetic phase shift of the two waves. The electrons do not
experience any stray-field hence no Lorentz-force, otherwise also the Fresnel fringes would be displaced. From [15].

Figure 12. Magnetic phase shift due to enclosed magnetic flux (ESAB effect). (a) Interference pattern; (b) schematic setup; (c) SEM image.
Doughnut-shaped (toroidal) ferromagnets six micrometres in diameter are covered with niobium superconductors to completely confine the
magnetic field within the doughnuts to remove any flux leakage due to the Meissner effect. With the magnet maintained at 5 K, a phase
difference of = is detected between one electron beam passing though the hole in the doughnut and the other passing on the outside of the
doughnut. The phase quantization in 7 units indicating the flux quantization assures no flux leakage. From [16].

the same side of the coil, the straight Fresnel fringes prove

that there was no stray B-field at the electrons trajectory. The

ESAB-effect was later also verified by Schmid [6] with the WVin

micro-coil encapsulated in a glass tube evaporated with gold,

to prevent electrons from entering the interior flux. Tonomura

et al [16] used a magnetic ring, which was embedded in

superconducting material to shield the magnetic flux perfectly

from leaking outside (figure 12). Inboth cases the ESAB-effect

was measured in excellent agreement with theory. Wout
Also, if the electrons run through the B-field and hence re \x

experience a Lorentz force, the phase shift is always given

by the enclosed magnetic flux. In general, the bending of

the trajectories has to be taken into account for evaluation of

the integral. With thin, electron-transparent magnetic films,

however, one can mostly neglect the bending and integrate

simply over z (figure 13).

[20] ® |3t

S le----F------
.

Ao
@(x)

o(x) = 27lo (x)

h mag

Figure 13. Phase shift from a magnetized thin film. With respect to

. . . . the indicated reference point, the phase of the object exit wave oy
Comparison of phase shift and trajectory displacement. A is shifted proportional to the respectively enclosed flux @, (x). For

tilt of the trajectory of the electron particle can be considered  Jarge x-values beyond the field region, the phase remains at the
equivalent to the phase gradient of the corresponding electron  shifted level according to the ESAB-effect.
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wave. Since in field-free space the wave front is the surface
orthogonal to the bundle of all trajectories, the relation

2
—D

2k =
TE=T

Vo (2.47)

holds. Consequently, wave and trajectories contain equivalent
information about fields and potentials and hence both can be
used for measuring them. Nevertheless, wave and particle are
not completely equivalent as to measurement accuracy.

To illustrate the relation between wave and particle
aspect, assume the situation sketched in figure 13: an electron
beam is transmitted through a thin film of width » and
thickness ¢, which carries a B-field oriented in the y-direction
perpendicular to the drawing plane. On one side, the
trajectories are deflected by the Lorentzian force resulting in
the angle

Pz p

(2.48)

On the other side, here the phase gradient of the electron wave
is given by

0 0Dy, v
W pn88me 5 fpr =2 P (2.49)
ox h ox h h

Consequently, formally, the phase shift Ag can be

mathematically determined by measuring 9 (x) and integrating
over x

X

Updx.
0

2w

p (2.50)

* o
A(p(X):/ 8—¢dx=
0 X

However, because of the Heisenberg relation for particles

ApcAx = h/2m, (2.51)
which, with Ax = b/2, reads here
pY-b>=h/nm (2.52)
it follows a classical limit
A@elass (x) = 2. (2.53)

Consequently, from the distribution of deflection angles of
particle trajectories at incoherent illumination, e.g. obtained
by Lorentz microscopy, only structures can be determined
significantly, which, in the wave image, would produce a
phase shift of at least 2rad. This was already pointed out
by Wohlleben [17] and Cohen [18]. Using their Heisenberg-
relation Ap - b > h, for evaluating trajectories, one finds the
classical limit A¢cpass(x) = 27, which is more intuitive. In
any case, by interferometric phase measurements, however,
small fractions of 2 can easily be measured; the Heisenberg-
limit does not exist for waves. The measurement accuracy
of waves is only limited by the signal/noise properties of the
interferogram, as later shown in section 4.
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Phase shift: résumé. Interpretation of the measured phase
shift in terms of an object is often very tedious. For example,
at an object consisting of both electric and magnetic phase
shifting components, there is the need for distinguishing the
two. This can be achieved by taking two holograms at
different accelerating voltages, because the electric phase shift
is sensitive against the electron velocity whereas the magnetic
one is not. Another possibility [19] needs to take a second
hologram with an object flipped over. Then the sum of the two
measured phase distributions reveals the electric component
whereas the difference reveals the magnetic one.

2.4. Inelastic interaction

Decoherence by energy transfer: coherence at inelastic
interaction. The interaction of electrons with electric and
magnetic fields is perfectly elastic, i.e. it does not give rise to
any energy transfer, as long as the fields are constant in time. If,
however, e.g. the electric potential changes while an electron
isin the field, energy is transferred from the field to the electron
or vice versa (‘inelastic’). If this happens only in one of the
two waves, there arises an energy difference § E' between the
interfering waves V1 »(F; t) = a; 2 exp(i27 ky »F — w) 21). For
small energy differences such as <1 eV, the resulting spatial
frequency of the fringes may be written as g. = (k| + k2)8/2,
which is virtually unchanged. However, the energy difference
gives rise to a time-dependent interference pattern (‘beat’)

I(x,y;t) =2Iy(1 +cos(2mgc.x +2mvt)) (2.54)

withv = § E/ h. This beat-phenomenon is extremely sensitive.
For example, a beat frequency of v 1cps results for
SE = 4.135 x 10~ eV. It depends on the time resolution
T of the detector, whether one can still detect the interference
fringes in the recorded intensity

1 T
Liec(x, y) =21 (1 + — / cos(2mgc.x +2mvt) dt) ,
T Jo

(2.55)
which can be written as

Lec(x, y) = 21y (1 + |1°F (1) | cos2mgex + 2717 /2))
(2.56)
with
wE () = |u’F (v)| exp(i2mve/2) = %/exp(ivat)dt.
0

(2.57)
hence with in )
sin(rvt
A ()| = —— (2.58)
TVT
with a first zero at .
T =—. (2.59)
v

Consequently, it strongly depends on exposure time t, whether
coherence is found or not. For frequencies v > 1cps, i.e.
SE > 4.135 x 10~ eV, one would need such short exposure
times that the number of collected electrons is very low,
hence the signal disappears in quantum noise. Compared
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with 4.135 x 10715 eV, the energy transfer to a wave, usually
occurring atinelastic interaction, is huge: excitation of phonons
with several meV, of plasmons at several eV or of inner shell
excitations at several 10 eV destroys coherence with respect to
an elastically scattered wave, or to an unscattered one.

Contrast reduction by inelastic interaction. We start again
with two coherent waves ¥, producing the interference
pattern

I(x,y) = af + a% +2aja; cos(2m gcx). (2.10)

Assume that the wave 1, is suffering an inelastic interaction
>10" eV with a probability Py, that an electron suffers
at least one inelastic event. Then the fraction Pinela% of the
intensity of ¥, will be incoherent with ¥r;, whereas (1— Pinel)a§
will remain coherent with it. Therefore, the interference
pattern results

I(x,y) =a} +a3 +2a1a3/1 — Pyt €082 gex).  (2.60)

This means that the contrast is reduced by the factor

Cinel =V 1 - Pinel~

Including coherence effects, the interference pattern reads

(2.61)

I(x,y) = a} +a3 +2|u| Cnaa1az cosRm gex)  (2.62)
with the contrast |/L|Cin61%.
1 2
For the usual assumption
Pinel =1- exp(_d/)hinel) (263)

with object thickness d and mean free path for inelastic
interaction Ajpej, ONe obtains

Cinel = exp(—d/2Aine1)- (2.64)
Inelastic coherence. The interesting question remains,
whether there is spatial coherence, and how wide is the
coherence area, within an inelastically scattered wavefield
of a well-defined energy loss. To answer this question, the
interferometer has to be combined with an energy filter. A
first experiment showed coherence [20]; in a second one, the
area of coherence was estimated larger than 10nm [21]. A
more systematic investigation measured the decay of the degree
of coherence of plasmon-scattered electrons with mutual
distance, and it revealed that coherence reaches out as far
as 30nm [22-24]. Interestingly, the visibility of interference
fringes proves that the two superimposed waves, inelastically
scattered at SE ~ 15eV, have an energy difference smaller
than about 10~ eV.

Please note that in these experiments the interferograms
were recorded in the image plane, i.e. in the plane optically
conjugate to the inelastic process. The finding of coherence
in the inelastic wave fields is very interesting insofar as,
at first sight, an inelastic interaction may be considered as
a measurement process collapsing the wave into a point,
hence showing no spatial coherence in the object plane. A
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basic understanding may be established by the following
possibly over-simplified reasoning: as shown by Howie [25],
an energy transfer from E to E + §E is always accompanied
by a deflection with the angular spread ;g ~ SE/(2E).
Therefore, the momentum of the electrons is correspondingly
undefined, which gives rise to a Heisenberg-Uncertainty
(equation (2.31)) for the position of the inelastic process, by
the diameter

D = A/(79%); (2.65)

this is usually called delocalization of inelastic interaction.
Because of the equivalence with the spatial coherence condi-
tion, the delocalization disc produced in the object plane agrees
approximately with the extension of spatial coherence in the
inelastic wave field issued from and referred back to the object.
A more general and sophisticated description based on Rose
and Kohl [26] is given by Verbeeck et al [27]

3. Information transfer in a transmission electron
microscope (TEM)

An electron wave transmitted through an object may be
modulated in amplitude and phase according to the interaction
processes with the object structure. To reveal the object
structure, the wave has to be imaged at a sufficient
magnification using a microscope. The imaging process can
be analyzed as follows:

Basically, an optical imaging system is a transfer system
for waves. The input-signal is the object exit wave in the object
exit plane with 7 = (x, y)

obj(F) = a(r) exp(ip(r)), (3.1
which is transferred into the output-signal, i.e. the image wave
found in the detector plane

ima(r) = A(F) exp(ip (¥)). 3.2)

The coordinate 7 in the image wave is related to the object
exit plane. The image wave is analyzed in order to yield
data sets for the comprehensive characterization of the object
structure. For interpretation of the image wave in terms of the
object properties, one has to understand the relation between
amplitudes a(7) and A(7), as well as between the phases ¢ ()
and ¢ (¥) of the two waves. This is established by means of
the transfer theory sketched in the following.

3.1. Wave optical transfer of information: Abbe theory

According to Abbe, microscopic imaging is described in two
steps, i.e. diffraction and interference of waves (figure 14). In
the first step, the object exit wave

obj(r) = a() exp(ip(r)) (3.3)
modulated by the object structure is propagating in free space.
In correspondence with the Huygens principle, the propagating
wave is described by the Kirchhoff diffraction integral. In
the near field of the object, this is well approximated by
a Fresnel Integral (‘Fresnel diffraction’), e.g. giving rise to
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------ Object Exit Wave

Obijective Lens FT

- - Diffraction Pattern

FT-

Image Wave

Figure 14. Abbe theory of imaging. The objective lens forms a
pattern of diffracted waves of the object exit wave in the back focal
plane; this is far-field diffraction described as a Fourier-transform.
The mutually coherent diffracted waves interfere in the image plane
building up the image wave, described as an inverse
Fourier-transform. The achievable resolution is given by the
opening angle of the objective lens, which can also be seen in the
extent of the diffraction pattern.

Fresnel fringes; in the far field, the solution is given by
a Fourier integral (‘Fraunhofer diffraction’), which, in the
case of periodic patterns in the object, shows well-separated
reflections. It is called the Fourier spectrum of the object exit
wave

oo
spec(q) = / obj(¥) exp(—i2mgr) d¥ (3.4)
—00
in short
spec(q) = FT[obj(r)], (3.5)
which again consists of amplitude and phase
spec(q) = Ispec(q)|exp(ip(9)). (3.6)

The spatial frequency g = ka is the variable in Fourier space,
where « is the diffraction angle as seen from the object, and k
is the wave number.

Since the back focal plane of a lens is conjugate to infinity,
one finds there roughly the Fourier-transform of the object
exit wave. ‘Roughly’ means that the amplitude |spec(g)| of
the Fourier spectrum is correct. The phase found in the back
focal plane, however, agrees with the phase o () of the Fourier
transform only, if the object exit wave is positioned in the front
focal plane of the lens. Strictly speaking, Abbe theory correctly
describes the imaging procedure by means of a 4 f-setup of
two lenses with two focal points coinciding. Nevertheless, at
microscopic imaging using one lens at large magnification, the
error is negligible.

In the second imaging step of Abbe, the Fourier spectrum
is considered as a 2D-array of mutually coherent point sources
at positions g emitting spherical waves weighted by spec(g) =
|spec(q)| exp(ip(g)). The waves propagate into the image
plane and interfere. Since, at high magnification, the image
plane is in the far-field of Fourier-space, the resulting wave is
obtained again by a Fourier transformation, now leading from
Fourier space back into real space by means of

o0
ima(7) :/ spec(q) exp(+i2mgr) dg 3.7
—00

in short

ima(7) = FT~![spec(q)]. (3.8)

Inserting spec(g) = FT[obj(¥)], one finds ima(¥) = obj(¥),
hence A(F) = a(F) and ¢ () = ¢(¥), i.e. amplitudes and
phases of image and object wave agree perfectly. This is called
ideal imaging.

Interventions in the back focal plane. 'The Fourier spectrum
spec(qg) = |spec(q)|exp(ip(g)) represents the object
information sorted by spatial frequencies.

Interventions can alter the modulus |spec(g)| by an
aperture B(g) damping or masking out diffracted waves from
contributing, and the phase p(g) can be changed by means of
a phase plate x (7). In general, these are accounted for by the

wave transfer function
WTF(q) = B(q) exp(—ix(q)). (3.9)

Then the Fourier spectrum building up the image wave is
given as

SPECima(§) = specyy (§) - WTF(q) (3.10)
and the image wave follows as
ima(r) = FT™! [Specop; (@)WTF(@)]. (3.11)

With the convolution theorem of Fourier transformations

FT[f - g1 = FT[f1 ® FT[g], (3.12)
the image wave can also be written as
ima(r) = obj(F) ® PSF(r), (3.13)

i.e. by convolution (®) of the object wave with the point spread
function

PSF(7) = FT"'[WTF(@)]. (3.14)

In signal transfer theory, PSF is called impulsive response.

Diffraction limited imaging. Due to the finite extension of the
lens, the maximum acceptable diffraction angle oy« limits the
Fourier spectrum by an equivalent aperture

1 for |g| < |gmax] = kmax,

B(q) = (3.15)

0 for |6]| > |Qmax| - ko{max~

Therefore the point spread Function is rotational
symmetric, given as

J1127 gmaxr ]

PSF(r) = E—
max

(3.16)

with the Bessel-function of first order J;(z). For the first zero
of |PSF(r)|, one finds

Gres = 1.6 kamax (3.17)

as resolution. For the small angles occurring in a TEM, this
is equivalent to the famous Abbe-formula for the minimum
resolved distance

1 A
= 0.61
Gres

8= (3.18)

Olmux
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Interpretation.  Although the resulting expression ima(7) =
obj(F) ® PSF(F) is very clearly interpreted visually as
‘smearing out’, the determination of the image wave is in
general very difficult to perform analytically. Therefore,
transfer is formulated in Fourier space. Without much loss of
generality, one can restrict to weak objects, which frequently
occur in electron microscopy. They have an amplitude a(¥) =
1 — ¢ (¥) with the amplitude modulation 7 (¥) < 1, and a phase
() < 21—7(7) Then the object wave obj(7) = a(¥) exp(ig) can
be expanded as

obj(¥) = (1 — t(F) (1 +ig(F)) (3.19)
and, omitting higher than linear terms,
obj(¥) =1 —t(F) +ip(¥) (3.20)

remains.

Because of the involved Fourier transforms, it is very
helpful to analyze the transfer for one spatial frequency gy,
and to generalize the result correspondingly. Therefore, in the
following, the object wave

obj(x) =1 — (¢, —igg) cos(2m gox + &) (3.21)
is considered, which represents an elementary mixed
amplitude/phase grating with a position relative to the optic
axis given by the lateral phase €.

The Fourier spectrum

specyy (q) = 8(q) + 31/13 + 9§ exp(ivt) {exp(ie)d (g — qo)

+ exp(—ie)d(g + qo)} (3.22)

consists of three reflections. The phase of the two off-axis

reflections is given by ¢

arctan [%] symmetrical in ¢,
and by the lateral phase e, which is anti-symmetrical in q.
Symmetry and anti-symmetry of the phases decide whether
they contain the amplitude/phase property of the grating such
as ¥, or the lateral position such as €.

Under ideal imaging, the image wave perfectly agrees with
the object wave and hence the image intensity reads as

Lo (x) = ima - ima® = 1 — 25 cos(2mgox + &)

+ (15 + ¢3) cos* (2m qox + €). (3.23)

Whereas the wave is always transferred linearly, in intensity
only the first two terms are linearly related to object properties.
The third one is quadratic in #y and ¢9, which, because
of cos?(z) = %(1 + cos(2z)), represents the double spatial
frequency 2q( (‘half-spacings’). This is an artifact of the
intensity not present in the object, because the linear intensity
contributions display the true object structure. Additionally,
the contrast C = 21y only shows the amplitude modulation
(‘amplitude contrast’); phase contrast, i.e. contrast induced by
the object phase ¢y, is missing. (figure 15)
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---- Object Wave o(7)=a(F)exp (i o))
i Amplitude a(7)  Phase ¢(7)

B_a_ck-FocaI-PIane

FT{o(7)}

Amplitude 4(7) Phase ®(7)

b(7)= A7) exp(i o (7))

~ Image Wave

Detector Intensity 1(7)=1(7.a)=a*(F)

Figure 15. Wave transfer by an ideal objective lens. Amplitude and
phase of the object wave are uniquely transferred into amplitude and
phase of the image wave. In the image intensity one finds the
amplitude squared, whereas the phase is not displayed. The phase
channel is blocked. The scheme is valid for a weak object.

Zernike phase contrast by a ‘M/4-phase plate’. Zernike
[28] recognized that the mathematical difference between
amplitude and phase is that the phase is multiplied by the
imaginary uniti = exp(izr/2). He showed the way to optimum
phase contrast by inserting into Fourier space a ‘A/4-phase
plate’, which introduces an additional phase shift x(g) =
4 /2 between the zero beam (¢ = 0) and the diffracted beams
(g # 0). This phase plate changes the object spectrum to the
image spectrum

specin@) = 300) + 51 -t exp (i (£ 7))

x {exp(ie)d(q — qo) +exp(—ie)d(q +qo)},
(3.24)

which results in an image wave

ima(x) = 1 — (&iz, F @p) cos(2m gox + €). (3.25)

Now, amplitude and phase in the image wave are
exchanged with respect to the object wave, hence the linear
intensity component

Tima(x) = 1 F 2¢p cos(2mrgox + €) (3.26)

shows perfect Zernike phase contrast C = 2¢,, whereas the
amplitude is invisible (figure 16).

Effect of a more general phase plate. If the phase plate shifts
the phase of the Fourier components by an arbitrary value ,
the image spectrum reads as

SPECim, () = 8(q) + 3+/13 + 9§ exp(i(D + X))

x {exp(ie)d(q — qo) +exp(—ie)d(q + qo)},
(3.27)

which produces an image wave

ima = 1 — (T + igy) cos(2m gox + €) (3.28)
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""" i ---- Object Wave o(F)= a(F) exp i o(7))
i Amplitude a(7)  Phase ¢(7)
_ _ _Zernike-Phase-Plate
FT{a(r')} cxp(i n/Z)
Amplitude 4(7) Phase ®(7)
“Image Wave b(F)= A7) exp(i (7))
Detector Intensity 7(7)=I(7.¢)=o(7)

Figure 16. Wave transfer with Zernike phase plate. Inserting a

7 /2-plate shifting the phases of the diffracted waves (or of the
undiffracted wave) exchanges the amplitude and the phase channel
between object and image wave. Now in the image intensity the
object phase is visible. The image phase containing object
amplitude is blocked. The scheme is valid for a weak object.

----- | ---- Object Wave o(F)=a(F) exp i (7))

i Amplitude a(7)  Phase o(7)
sin
L __Phase Plate c casy,
% = const FT {0(7)} exp (* i 7()

Amplitude 4(#) Phase ®(#)

- |mage Wave b(f): A(F)exP(i CD(F))

Detector |Intensity 1(7)=1(7.a.9)= 4°(7)

Figure 17. Wave transfer with arbitrary phase plate. An arbitrary
phase shift x of the diffracted waves (or of the undiffracted wave)
produces an intermediate of figures 15 and 16. Partly the object
amplitude and phase are distributed amongst the amplitude and
phase of the image wave, straight and across according to the cos x
and sin x-values. In the image intensity, one finds a corresponding
mixture of the object amplitude and phase. The image phase
channel with the complementary object information is blocked. The
scheme is valid for a weak object.

with the amplitude modulation

To = (¢, cOs X + ¢q sin ) (3.29)

and the phase

$o = (Lo sin X — @o cos x). (3.30)

Consequently, both amplitude and phase of the object
wave contribute to both amplitude as well as phase of the
image wave with the respective weighting factors cos y and
sin x. Therefore, in the image wave, amplitude and phase of
the object wave are mixed up according to the scheme shown
in figure 17.
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Since the image intensity is given by

Iima(x) =1 — 2Ty cos(2m gox + ¢€) (3.31)
the weighting factors
PCTF :=sin x (3.32)
and
ACTF :=cos x (3.33)

control phase contrast and amplitude contrast and are hence
called phase contrast transfer factor and amplitude contrast
transfer factor, respectively.

3.2. Aberrations

Up to now, aberration-free imaging was considered. This is
realized in light optics, since one has learned already in the 19th
century, to build lenses free from aberrations. For example,
spherical aberration was overcome by combining lenses
with corresponding positive and negative spherical aberration
coefficients. In electron optics, however, Scherzer showed
that round lenses, which are free from space charges and have
a focusing power constant in time, always have a positive
spherical aberration coefficient [29]. Since the resolution of
an electron microscope is predominantly determined by the
objective lens, only the aberrations of the objective lens are
considered in the following.

Coherent aberrations. Coherent aberrations means in short
that these aberrations are effective also at perfectly coherent
illumination of the object, both spatial and temporal. They
can be described by means of a phase plate exp(—ix (g)), with
the wave aberration x(q) = 2wk, A;, which distorts the
phases in Fourier space. For the transfer of the wave up to a
resolution of g5 = 10 nm~!, the following contributions A;
have to be taken into account:

1 2
e Defocus EDZ (%) (3.34)
. . 1 q\*

e Spherical aberration of 3rd order ZC s <E) (3.35)

. 1 q\?
Twofold astigmatism EAQ (;) cos (2(a — aa2))
(3.36)

1 3
Threefold astigmatism §A3 (%) cos (3(a — aa3))
(3.37)

3
e Axial coma %B (%) cos (@ — ap) (3.38)
with the azimuth @ of g. The phase plate exp(—ix(q))
represents the phase factor of the wave transfer function
(WTF).

Since symmetry of the phases in Fourier space plays
an important role, please note that the first three are point
symmetrical about the optic axis; they change the Zernike
phase ¥ and hence influence the amplitude/phase character of
the object structure in the image wave. The last two are anti-
symmetric about the optic axis and hence change the lateral
position ¢.
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- --- Object Wave o(7)= a(7) exp(i ¢(7))

| Amplitude a(7)  Phase ¢(7)

cos x(q)

x(zi ) ~Wave Aberration

FT {o (;7 )} exp (— i )(((] ))

Amplitude 4(7) Phase ®(7)
b(7)= A(F ) exp(i ©(7))

- Image Wave

Detector Intensity /(7)=1(7,G.a,9)= 4*(F)

Figure 18. Wave transfer with coherent aberrations. Coherent
aberrations form a phase plate x (). Again, the object wave is
transferred along the four channels, however, this is more
complicated in that the weighting factors are now dependent on
spatial frequency g. In the image intensity one finds a complex
mixture of object amplitude and phase. A considerable amount of
object information is lost in the blocked image phase channel.
Scheme is valid for a weak object.

Optimization of coherent aberrations. Axial coma can be
avoided by very careful alignment of the illumination direction
on the optic axis of the objective lens. The two astigmatisms
can be corrected by means of respective stigmators. Focus
can easily be adjusted at any value. Until recently, spherical
aberration could not be corrected. In the following, the route to
atomic resolution with spherical aberration is sketched, which
also shows a way around the missing phase contrast problem
pointed out by Scherzer [30]. Scherzer showed that spherical
aberration and defocus have to be combined in such a way
that optimum phase contrast transfer results, because the most
interesting components of the object structure, e.g. the atoms,
are predominantly phase objects.

For an arbitrary object we have to consider all spatial
frequencies. Therefore the previously introduced contrast
transfer factors have to be generalized as functions, i.e. as
phase contrast transfer function

PCTF := sin x(q) (3.39)
and
amplitude contrast transfer function

ACTF := cos x(q).- (3.40)

The corresponding flux diagram is shown in figure 18.
For optimum phase contrast, PCTF = £1 and ACTF = 0
is needed for all spatial frequencies. Therefore, the residual

wave aberration
4 2
) +30:(%)

has to approach the Zernike phase value 7 /2 for a spatial
frequency range of maximal width. This is achieved at the
Scherzer-focus given by

[Cs
D2zZgcher, = —1.2 7

1D
22

q

k

q

P (3.41)

=2k 1C
x(q) =2m (Z s(

(3.42)
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Figure 19. Contrast transfer functions at Scherzer focus. The phase
contrast transfer exhibits a broad Scherzer band reaching from gy,
to g5, Where all spatial frequencies are transferred at the same sign.
This is, however, not true for the amplitude contrast transfer showing
oscillations for these spatial frequencies. Beyond the information
transfer limit gy, the information is damped below e~! and hence
assumed lost in noise. Damping is due to the damping functions
E*(q) and E*(q) from spatial and temporal coherence, respectively.

The PCTF at Scherzer-focus is plotted in figure 19.
It shows that a rather broad Scherzer-band is transferred
satisfactorily. For spatial frequencies beyond the first zero
(‘point resolution’) at

k3
{scherz = 1~5\4l ay

the PCTF increasingly oscillates, which gives rise to severe
falsifications by contrast reversal and information loss at the
subsequent zeros below noise. Therefore, ggper, 18 called
point resolution limit, beyond which the interpretation is very
difficult. Furthermore, there is no phase contrast for spatial
frequencies smaller than

[ k3
qmin = 0.385 ' a ~ CIscherz/4,

meaning that large area phase structures are missing in the
intensity image. In any case, coherent aberrations distribute the

(3.43)

(3.44)
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Figure 20. Gold particle in a TEM without Cs-corrector. The dots
seem to represent the real atoms. However, information is
delocalized by the point spread function with a diameter shown by
the white circle above the marker. Therefore, the dots represent
averaged atomic information, which may be displaced outside the
particle (white arrows). Quantitative interpretation is very difficult
locally, if possible at all.

object information into amplitude and phase of the image wave,
however, they virtually do not destroy information. Summing
up, a TEM is an imaging device with pass-band characteristics
given by the Scherzer-band.

Delocalization of information. In the intensity image one
finds atomic details with the resolution gcher,, and even
beyond, because of nonlinearities. Of course, the appearance
of bright or dark dots on an atomic scale is very suggestive and
leads one to believe that one sees the real atoms. However, this
is only partially true, because the atomic dots may sit in wrong
positions and have wrong intensities due to ‘delocalization of
information’. Delocalization smears the information into a
disc of confusion; it is described by the point spread function
(PSF) mentioned earlier. Under incoherent illumination it
would be a blurred disc without fine structure, but under
coherent illumination it is filled with atomic dots, however
averaged.

Of course, delocalization is a consequence of aberrations.
A suitable measure for delocalization is the diameter of the
PSF given as

psf = grad,. x (§)/7, (3.45)

i.e. the maximum of the gradient of the wave aberration in
the range of spatial frequencies admitted to the image [31].
Very interesting is the situation at Scherzer-focus. Inserting
the corresponding wave aberration, one finds that

psf = 4.75/qscherz (3.46)
is simply given by the point resolution. This means that
we have a comparably strong delocalization. For example,
at Gscherz Snm~!, the atoms are found in a position,
which may be wrong by psf &~ 1nm. Inside of large,
perfectly periodic crystals, this just changes the contrast
according to the transfer functions. At discontinuities like
defects, interfaces and surfaces, however, the findings are not
interpretable in terms of the object, neither qualitatively nor
quantitatively (figure 20). A remedy against delocalization
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is only the correction of aberrations, including spherical
aberration.

Incoherent aberrations. In addition to the coherent ones,
incoherent aberrations come up because of the limited degree
of coherence of electron beams. In combination with the
coherent aberrations, the spread of illumination direction
(spatial coherence) and of wave-numbers (temporal coherence)
gives rise to damping functions, which act like apertures.
Spatial coherence results in the spatial coherence damping
function, temporal coherence induces the temporal coherence
damping function.

Spatial coherence damping function.  Atatilt of illumination,
the imaging process changes in two different aspects: first,
the interaction with the object changes in that the projection
direction and the diffraction at crystalline structures and hence
excitation of reflection change in amplitude and phase; at small
tilt angles, these effects can be neglected. The second aspect,
however, has a much stronger influence in that tilting by an
angle aj shifts the Fourier spectrum of the object by the
spatial frequency Q = kaj;. Therefore, it experiences a wave
aberration x (7 + Q), which can be expanded as

X(@G+0)~ x(@) + O gradx () (3.47)

for the usual small tilt angles. If the wave aberration x (§) =
x(—q) is symmetrical, grady (g) is antisymmetric in ¢, and
hence the image wave of an elementary grating is laterally
shifted as

imag () = 1+ (Tp + igh) cos(2m qox + & + 0 grady (o)),
(3.48)
and the intensity reads as

Lm0 (F) = 1 — 2Ty cos (27 qox + & + Q gradx (o). (3.49)

Since the waves for different Q are incoherent, the
intensity resulting _under illumination from a normalized
extended source i(Q) is given by the sum of the respectively
weighted intensities

Lina(F) = / i(0) Tima, 0 (F) O, (3.50)
which results in
Lina(F) = 1 — 2E%(go) Ty cos R qox +& + p(qo))  (3.51)

with

i(0) exp(i2 gradx (§) 0)d0

(3.52)
given by the Fourier-transform of the source function i(é).
Since it is related to the degree of spatial coherence, E*°(q) is
called the damping function of spatial coherence.
In a well-aligned microscope with a rotational-symmetric
Gaussian source with

E*@) explip(@) = f

source

i(0) = exp(— 0%/ 02), (3.53)

2
7w Qp
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i.e. an illumination aperture (half width at half maximum) of
ain = Qo/k

and wave aberration given by spherical aberration and defocus

only, one finally obtains
(e o:(1)))

(3.55)
Temporal coherence damping. An analogous procedure is
used to grasp the influence of the spectrum s(k) of wave
numbers emitted from the electron source. Of course, by
means of k = /2moE/h, s(k) is related to the energy
spectrum G(E) occurring at the emission process, which is
usually given as source-characteristics. With a FWHM-width
of AE ~ 1eV at U, = 300kV one can estimate the width
Ak/k ~ AE/(2E) ~ 107% of the wave number distribution
to be very small.

Similarly to the tilt of illumination, a variation of the wave
number introduces changes at the interaction with the object,
e.g. diffraction angles, and the interaction coefficient 0. Again,
these effects can be neglected, because the width of s (k) is very
small.

However, the influence on the imaging process has to be
considered, since the wave aberration function yx (§) depends
on k and hence on E. The main contribution stems from
the defocus-term 3Dz (£)” (3.34), because the focal power
depends on electron energy and is normally given for the
nominal energy eU;. Atadeviation § E, Dz has to be replaced
by Dz + CC% depending on energy via C. the coefficient
of chromatic aiaerration of the objective lens. Therefore, the
intensity of the weak phase grating reads as

(3.54)

4
k

q

k

2.2
2 Koy
_7'[' —_—

E*(q) = exp ( 2

Limasg(F) = 1 = 2TH(8E) cos(2m gox + €). (3.56)

Integration over all these intensities weighted with the
(normalized) energy spectrum G (S E)

Ta () = / G(OE) i, (F) dSE (3.57)
source
delivers
Lina g (F) = 1 = 2|E“(q)| Ty cos(2m gox +&).  (3.58)

The function

q

ko

SE
eU?

2
E®(g) = / G(SE)exp (inkoCC ( ) > dSE (3.59)
is complex, if G (6 E) is not symmetric; then the phase describes
an additional mean defocus. If G(§ E) is symmetric, E*(g) isa
real function (temporal coherence damping function) damping
the resulting contrast of the image intensity of the grating with
spatial frequency ¢g. If, for example, G(§ E) is Gaussian with
standard deviation stdg, it is given as

))

q

ko (3.60)

EtC( )_ _T[_ZkZAZ
q) = exp 7 "0
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with

(3.61)

c. std?,
(eUp)?
the focus spread.

Usually, A is generalized by the contributions from
variations of U, and lens current /e, as

omcf

In the case of conventional imaging of strong objects the
situation is much more difficult. ~ With the appropriate
distribution functions for illumination aperture F(a)=i(Q)
and for energy-related defocus H(Dz)=G(SE) , at partial
coherence the image intensity is found as

2
Tiens

12

lens

std%,a
U*Z
a

std%
(eUy)?

(3.62)

Lima () = f / b(r)b*(F) F(@)H(Dz)dadDz.  (3.63)

In Fourier space, this corresponds to

+00

St (@) = /

with the transmission cross coefficient

TCC(q',q") =[ H(Dz)F (i) exp(—i(x (§" + Gin,z + Dz)

Sovj(G + 1) Sk (NTCC(G +h, ) dh  (3.64)

—x(@" +gm,z+ Dz)))dgn dDz (3.65)

and the illumination direction given by gj; = ka with wave
number k. Evidently, in general Iy, () # A%(¥) holds.

Summary of aberrations. Coherent aberrations lead to a
mixing of the amplitude and phase components of the object
in the image. Therefore, interpretable resolution is limited to
Scherzer-resolution. Mixing destroys object information only
in the image intensity, whereas it does not destroy information
in the image wave. Therefore, the full object information can
be recovered by all methods analyzing the complete image
wave, i.e. all sorts of holography.

Incoherent aberrations damp the contributions to the
image intensity as well as to the image wave. They destroy
information in both, if damped below noise. The resulting
damping envelope function is usually taken as

E(q) == E*(q) - E“(q) (3.66)
which defines the information limit gj;y,, where damping leads
below an assumed noise level.

Interpretation of findings. The transfer scheme (figure 18)
together with the wave transfer function

WTF(g) = E(q) - exp(—ix(4)) (3.67)

shows the problems of conventional imaging in a TEM:

1. Mixing of amplitude a(¥) and phase ¢(¥) of the object
wave in amplitude A () and phase ¢ (7) of the image wave.
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. Phase contrast in the image intensity A2(7) only
interpretable within the spatial frequency band reaching
from gmin tO gscherz €ven at Scherzer focus for optimum
phase contrast.

. Spatial frequencies beyond ggcher, Up to the information
limit g, are transferred, however damped and with
oscillating phase contrast transfer function hence difficult
to interpret.

. Spatial frequencies below about gpin ~ Gscherz/4 invisible.

. Delocalization of the ‘resolved’ structures by coherent
blurring (point spread function) of the image wave
prohibits analyzing the true structures at the interfaces
and defects. Even at Scherzer focus, the delocalisation
amounts to about 4.75/¢scherz-

. Nonlinear information (higher harmonics and mixing of
different reflexions) shows up as artifacts in the image
intensity, but not in the image wave.

. Loss of the image phase ¢ (r) in the recorded image
intensity.

In spite of the fact that these problems are theoretically
precisely understood, the obtained images cannot be corrected
from the aberrations, because the needed phase ¢ of the image
wave is missing.

Cs-corrector for spherical aberration correction.  Of course,
right from the early days, electron microscopists were
searching for a possibility of correcting spherical aberration.
However, as already mentioned, Scherzer had already shown
in 1936 [29] that the coefficient Cs of spherical aberration is
always positive for round, time-independent lens fields, which
are free from space charges. Therefore, the method of light-
optics, i.e. combining usual lenses for compensating negative
and positive spherical aberration, could not be realized in
electron optics.

After attempts of many paving the way, Harald Rose
in 1990 designed a system of (un-round) multipole lenses,
which effectively shows imaging properties of a round
system but a negative Cs-value [32] and hence is able to
compensate the positive Cs of the usual objective lens. This
Cs-corrector was successfully built and implemented into a
TEM [33]. Meanwhile, a variety of TEMs with Cs-corrector
are commercially available, where all aberrations of up to 3rd
order can be corrected. This means a huge step forward in that
ideal imaging up to a true resolution of ~10nm~! is presently
reachable also in electron microscopy (e.g. [34,35]). The
information limit is finally determined only by the temporal
damping function, i.e. by chromatic aberration.

The main benefits of Cs-correction are illustrated by
means of figure 21. The delocalization has shrunken to the
apparent resolution, the atomic dots are interpretable as atoms
both in position and intensity. The consequence is that small
details are clearly observable, such as small deviations from
perfect lattice planes. In fact, often lattice planes are no planes
at all.

However, the phase contrast problem is even worse with
the Cs-corrector: corresponding to figure 15, the object phase
is completely invisible in the intensity image. Here, only
holographic methods can help.

19

Figure 21. Gold particle in a TEM with Cs-corrector. The dot
above the marker showing the diameter of point spread function has
the same size as the atomic dots. These may now be interpreted as
atoms. This image reveals that lattice planes are not planes but are
actually curved due to the strain in the particle. In the top right, one
finds a rotation of lattice planes indicating larger atomic distances at
the surface than inside. Now quantitative interpretation is possible
on the atomic scale. Recorded with a FEI Tecnai F20/Cs-corr
electron microscope.

4. Electron holography

4.1. Basic idea

The Hungarian physicist Dennis Gabor realized the problems
occurring with electron microscopy from the unavoidable
spherical aberration of the objective lens. Therefore, he
developed the idea of lens-less imaging by means of the
following method [36, 37]: let the object wave propagate in
space according to the well-known wave equation. If one
succeeds in recording the complete wave with amplitude and
phase by means of a detector at some distance, the wave can
be back-propagated according to the same wave equation.
The only critical point is that the detector must record the
propagated wave completely, i.e. including both amplitude and
phase. This complete detection was achieved by Gabor by
interfering the propagated wave with a known reference wave.
The arising interference fringes are modulated in contrast and
position by amplitude and phase of the wave, respectively.
This means that the wave is indeed recorded completely in
an interference pattern, which he therefore named ‘hologram’
(from Greek Oroc meaning complete).

Furthermore, Gabor recognized that the hologram can
be considered a highly complicated diffraction grating. This
grating has the astonishing property that, illuminated with a
copy of the reference wave previously used for interference,
it issues—amongst others—a diffracted wave, which is a
revival of the propagated object wave. This one has to be
isolated from the others and back-propagated to the object exit
plane, to recover the object exit wave for further analysis.
Interestingly, this ‘reconstruction’ can be accomplished by
means of any wave following the wave equation, be it
electromagnetic, mechanic, quantum or numeric, if the
corresponding constraints (fringe distance, etc) are met. The
most severe condition is that coherence is indispensable for
both recording the hologram and reconstructing the wave.
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In light optics, nowadays, with the LASER as a nearly
perfectly coherent light source, holography is widespread in
a variety of holographic techniques. The hologram may be
recorded in the near-field (Fresnel holograms), in the far-
field (Fraunhofer hologram), in the Fourier-spectrum (Fourier
hologram) etc. In any case, the reconstructed object wave,
accordingly back-propagated to the object exit plane, should
always be the same.

Most essential, however, is the way in which the reference
wave is superimposed on the object wave for recording the
hologram. Initially, Gabor proposed in-line holography,
where the reference wave propagates in the same direction
as the object wave. He found that, under reconstruction,
two conjugate waves (twin-waves) arise, which—in the in-line
case—overlap coherently and hence cannot be separated from
each other. This twin-image problem was solved by Leith and
Upatnieks [38], who proposed to superimpose reference and
object wave at an angle 8. Then the reconstructed twin-waves
are separated angularly by 28 and hence can be isolated from
each other in Fourier space.

4.2. Electron holography

Historically, Gabor developed holography aiming at electron
holography, to overcome the problems of electron microscopy.
In fact, in 1951 Haine and Mulvey were the first to record
electron holograms, namely Fresnel-in line holograms [39].
In the reconstructed wave they showed details of about 1 nm,
limited by the twin-image problem. In those days, further
progress was inhibited by the comparably poor stability of
electron microscopes and the lack of more coherent electron
sources.

In contrast to light holography using the LASER, electron
holography started flourishing much later, since the needed
degree of coherence is much more difficult to achieve with
electrons. Therefore, coherent electron optics was performed
only in a few especially experienced laboratories. For example
in Tuebingen, off-axis electron interferometry was developed
and well understood by Mollenstedt and co-workers from
1954. In 1968, Mollenstedt and Wahl, for holographic
purposes, recorded the first lens-less (no objective lens) off-
axis Fresnel hologram and successfully reconstructed the
electron wave with LASER light [40]. However, thinking
about the limits of this method, Wahl recognized that lens-
less imaging is not promising for electron holography, because
the achievable resolution is limited by the restricted degree of
spatial coherence of electrons. The reason is that the
waves diffracted at the object must be detected well inside
the restricted coherently illuminated patch to be caught in
the hologram, together with the coherent reference wave.
Consequently, the farther away from the object the hologram is
recorded, the more waves diffracted at large angles are missing
in the hologram and hence also in the reconstructed wave. Only
if the hologram is recorded in the object plane (or a conjugate
image plane), all diffracted waves are collected; hence, not
resolution, but field of view is limited by lack of coherence.
Therefore, from light optics Wahl adopted the method of
image plane off axis holography into electron microscopy and
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Figure 22. Scheme of image plane off-axis electron holography.
Left: the object wave is imaged into the image wave by the
conventional optics of the TEM. Superposition of the image wave
with a reference wave by means of the electron biprism produces the
hologram in the final image plane. The hologram is recorded by
means of a CCD-camera. Right: the hologram is fed to the
computer. After numerical reconstruction, the image wave is
back-propagated through an equivalent virtual microscope,
including aberration correction, if needed. The resulting object
wave may be analyzed quantitatively by any wave optical tool.

developed image plane off axis electron holography [41]. To
date, this is the most successful and widespread holographic
method applied in electron microscopy. Therefore, other
schemes for electron holography [42], which have been
attempted without comparable success, are not discussed in
the following.

4.3. Scheme of image plane off-axis electron holography

The basic scheme is shown in figure 22: in a TEM equipped
with a highly-coherent field emission electron source and
an electron biprism, the hologram is produced at adequate
magnification in the final image plane. It is recorded by
means of a CCD-camera and transferred to a computer, where
the image wave is reconstructed with the help of numerical
Fourier-optics. This means that the numerical image wave
is back-propagated through a virtual microscope modelled
according to the one used for recording the hologram; thereby,
aberrations are corrected. At the object exit face, one finds the
complete object exit wave, which can be evaluated according
to all needs one can think about.

Recording the hologram. For recording a hologram, the TEM
has to be modified only slightly in that an electron biprism is
inserted such that superposition with a plane reference wave is
achieved in the image plane. Usually, the biprism is inserted
slightly above the first intermediate image produced by the
objective lens (figure 23), because in any electron microscope
there is available a port for the selected area aperture, which
may also be used for a biprism holder. Unfortunately, this
is a non-optimum compromise, because at a fixed geometry
the overlapping width (giving field of view) and fringe
spacing (giving resolution) cannot be selected independently.
Optimum positions of the electron biprism in the path of rays
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Figure 23. Setup for recording off-axis image plane holograms.
The specimen on the right side of the optic axis and the adjacent
reference wave on the left are imaged into the image plane. The
biprism superimposes them in the image plane. The arising
interference pattern is the hologram, which is magnified by the
subsequent lenses according to the needs of recording by the
CCD-camera.

for the different applications of electron holography, e.g. at
medium or at highest resolution, are discussed in [43]. Elliptic
illumination for increasing the coherent current density in the
object is achieved by means of the condenser stigmator.

In any case, assume the image wave ima(F)
A(F) exp(i¢ (7)) transferred by the objective lens out to a
maximum spatial frequency gji,. Superimposed with a plane
reference wave of modulus 1 at an angle g in the x-direction,
it produces a hologram with the intensity distribution

Ihot(F) = 1+ Ig(F) + Line () + 2C - A(F) cos(2mgex + ¢ (7).
A.1)

q. ‘= kpf is the carrier spatial frequency, and C again means the
contrast of the hologram fringes. Here and in the following,
all variables describing the interference such as g. and g are
referred back to the object plane by division with magnification
of the objective lens.

Iina (F) represents all inelastic interaction larger than
about 1071 eV. It is interesting to remember that inelastically
scattered electrons do not contribute to the cosinoidal
interference term.

Properties of detector. ~ As detectors, CCD-cameras are used.
By means of a scintillator, the electron image is converted
into a photon image, which is transferred via fiber optics to
the CCD-chip. The obtained signal is corrected for variations
in gain and dark-current. For adaptation to the scattering in
the scintillator, the pixels on the CCD-chip are comparably
large, e.g. 27 um. Therefore, a CCD-chip with 1024 x 1024
pixels measures about 30 mm. Due to imperfections of the
fiber optics, the output image suffers from slight geometrical
distortions, which fortunately can be corrected afterwards.
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Figure 24. Electron hologram. In the highly magnified part, the
interference fringes are discernible. Their modulation both in
contrast and position gives rise to amplitude and phase modulations
in the reconstructed image wave. Object: SizNy.

Sideband +1
Central

B‘?f'd Sideband -1

subimage

circular aperture

Figure 25. Reconstruction of the image wave. The
Fourier-transform of the hologram exhibits three bands. The
sideband +1, representing the Fourier-transform of the image wave,
is masked out by a circular aperture and centered around the origin
of Fourier space. The smaller sub-image is inverse
Fourier-tranformed into real space to reveal the image wave.

Figures of merit are the pixel number np;, = 1024 and
2048 in a 1 k- and 2 k-camera, respectively. Furthermore, the
camera is characterized by the modulation transfer function
(MTF) out to Nyquist frequency sampled just by 2 pixels.
Also important is the detection quantum efficiency DQE =
(Signal /Noise)?

out
(Signal/Noise)?, *
camera to the noise of the incoming signal [44]. An example

of a hologram is shown in figure 24.

DQE is a measure for the noise added by the

Reconstruction of the complete electron wave from the
hologram. The Fourier spectrum (figure 25) of the hologram

spec(q) =
FT [1+ Iq(F) + Linet ()] centerband
+C -FT[A(F) exp(i¢p(F)] ® 8(G —gc)  + 1 sideband
+C -FT[A(F) exp(—ip ()| ® 8(G +¢c) — 1 sideband
4.2)

reveals 3 bands:

e the center band represents essentially the conventional
image; it contains both elastically and inelastically
scattered electrons and both linear and nonlinear terms.
It does not contain the image phase ¢ () and hence is not
of further interest here.
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Figure 26. Reconstructed image wave. The reconstructed image
wave shows a strong modulation both in amplitude and phase.
Whereas a conventional image would essentially contain the
amplitude only, here also the phase is accessible. This wave
showing atomic details cannot yet be interpreted in terms of the
object, because there is still a strong mixing between object
amplitude and phase in the image wave. This will be healed by
corrections of aberrations, as described in section 6.

e the +1-sidebands contain the Fourier-spectrum of the
complete image wave, damped by the factor C and

convoluted around g = =+¢,, respectively.

The two sidebands offer the big advantages that they only —

contain the elastically scattered electrons, and that amplitude
and phase are linearly related to the object properties. The
two sidebands are conjugate, i.e. equivalent and redundant in
that already one sideband contains all image wave information,
including quantum noise. Therefore, one sideband—usually )
the +1-sideband—is masked out by an aperture, and centered i ’-ii.. {ﬁ’ :
around g = 0 in an appropriate sub-image. Finally, by inverse ] X i
Fourier-transformation, the reconstructed image wave

00 300 400 300 600 700 800 90 1000

s “E%HIH;W@M%‘J'“

inlarec (?) = Apec (?) exp(id)rec (;:)) (43)

with
Arec(?) =C A(?)

is found in real space (figure 26).
Figure 27. Evaluation of reconstructed wave from a PZT-crystal.
Rectification by means of an empty reference hologram. (a) Amplitude and (b) phase as reconstructed. The gray scale
Geometric distortions, e.g. from the electron lenses and the increases from black to bright with increasing phase values. The
. . . lines with strong black/white contrast are equal-phase lines. They
CCD-camera, as well as from charging effects and dirt particles . . . S
L. . . show the transition 0 <> 27 arising from ‘phase wrapping’ under
at the blprlsrp, Produce bending of th.e hologram fringes  cyajuation of the arctan-function. As equiphasal lines, they give an
and hence artificial phase structures, which may conceal the intuitive idea about the phase distribution. Note from linescans
reconstructed phase image ¢ (¥). Additionally, mistilt of the along dotted lines that signal/noise is much better in the phase than
reconstructed wave may be introduced by improper centering 1P the 'amphtude. Fyrthermore .the phase can directly be interpreted
of the sideband. Therefore, for each hologram, an empty as projected mean inner potential. Differently processed phase

. . images based on the same data set: (¢) unwrapped, (d) 4x amplified,
reference hologram is recorded at the same optical parameters, (e) contours and ( f) arrow-plot of phase gradient. The four images
but without object. The reconstructed ‘empty wave’ is used  display the same phase distribution of the etched PZT-crystal
for correction of artifacts and mistilt, and furthermore, for looking like a bird-eye view of a hipped roof. All phase images very
normalization of the amplitude A e (F). f:learly revea}l the etching structure of the c'rystal. As'sur.ning constant

inner potential, the phase represents the thickness distribution.

Visual inspection. The wave is displayed by amplitude and

phase. Mostly the phase is the most interesting part. Since (figure 27). These lines are very helpful in that they give a very
the phases are extracted from complex numbers by means of instructive overview over the phase distribution and allow a first
the arctan-function, they are displayed in the range [0, 27], intuitive interpretation. If, on the contrary, the phase structure
mod27 (‘phase wrapping’). Therefore, if at strong phase of interest is very weak, these equiphasal lines can be selected
objects the phase dynamics exceeds 27, phase jumps 0 <> 2t at small fractions of 27, to enable visual interpretation (‘phase
occur, which show up as equiphasal lines at maximum contrast amplification’). In any case, before a detailed quantitative
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analysis, the phase jumps have to be removed by means of a
phase-unwrapping procedure, which adds or subtracts 27 at
the phase wrapping lines accordingly.

Quantitative wave optical analysis by numeric image
processing. The reconstructed image wave represents the
object exit wave, however, still distorted by the aberrations
of the objective lens. Nevertheless, the big advantage at this
stage of the comparably complicated holographic process over
conventional imaging is the availability of both amplitude and
phase. These are intrinsically quantitative data, and hence
all delineated information is quantitative. The reconstructed
image wave is the starting point of a complete wave optical
analysis by numerical image processing for the extraction of
the object data, which cannot be obtained by conventional
TEM. Like in a ‘virtual microscope’, the wave can be
defocused, it can be corrected from aberrations, and it can
be analyzed quantitatively in all ways one can think about; for
example, it can be displayed in bright-field mode as perfect
amplitude or phase image, or in dark-field mode masking out
or admitting any reflection in Fourier space. Furthermore,
one can determine amplitude and phase of any reflection
in Fourier space, determine the reflections contributing to
any detail of the object (‘holographic nanodiffraction’), or
the contribution of any reflection to amplitude and phase of
the field of view (‘holographic reflection analysis’). Also
in Fourier-space everything is quantitatively accessible by
amplitude and phase. Examples are given in the section about
high resolution holography.

4.4. Properties of the reconstructed image wave

The reliability of the object information determined by wave
optical analysis depends on the degree of fidelity of the
reconstructed wave with the ‘true’ image wave in the electron
microscope. Ideally, ima.(¥) = ima(¥) holds, ie. C = 1,
Arec(F) = A7), and ¢rec(F) = ¢(7).

However, there are some discrepancies:

1. The contrast C of the hologram fringes damps the
reconstructed wave, e.g. by the restricted spatial
coherence, by instabilitites, by the modulation tranfer
function of the CCD-camera, and by inelastic interaction,
i.e. loss of coherent electrons.

2. The reconstructed image wave represents a time-averaged
wave, which possibly never existed as such in the electron
microscope. Averaging comes about from collecting a
large number of electrons in the hologram, where each
may have ‘seen’ a slightly different object. The coherence
conditions make sure that fringes show up in the hologram;
but the slight differences, e.g. due to an object changing
the phase shift in time, remain. Therefore, with the
time dependent amplitude A(7, t) and phase ¢ (7, t), the
reconstructed wave results as

iMage. (F) = % /T A(F, 1) exp(ig (7, 1)) dt, (4.4)
0

where t again means exposure time of the hologram.
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. Signal/Noise-properties.

This averaged wave may never exist as such. To give an
example, assume an object with a pure phase detail, which
changes phase shift from ¢ = ¢o(¥) to ¢ = 0 halfway
during exposure time; for example, this could happen by
an atom hopping away under electron irradiation. The
reconstructed phase will be ¢rc(F) = ¢o(7)/2, and the
reconstructed amplitude A (F) = cos(¢o(¥)/2).

. The radius g, of the aperture, used to mask out the

sideband in Fourier space, determines the resolution
in analogy to Abbe theory of imaging; for the
highest resolution, it should be as wide as possible.
The maximum sensible radius @recmax, however, 1is
given by the distance g. of the sideband from the
centerband. Since, in general, the radius of the centerband
(FT[1 + I (7) + I;pe1 (F)]) measures up to twice the one of
the sideband (FT[A exp(i¢)]),
Qrecx,max < qc/3 (45)
has to be met. For a weak pure phase object, i.e. A = 1
hence FT[A?] = §(g), this relaxes to
<

Grec,max X qc-

(4.6)

Usually, a value in between these two limits is applicable.
In any case, the used part of the sideband must not
overlap with the centerband, to avoid disturbance from
information of the centerband. Therefore, if for any reason
q. is limited, the Fourier spectrum of the image wave has
to be restricted such that the relations (4.5) and (4.6) hold;
this must be done under recording the hologram by means
of an appropriate aperture in the back focal plane of the
objective lens. In any case, only the part not overlapping
with the centerband may be used for reconstruction. On
the other hand, it is disadvantageous to use larger carrier
frequencies than g. given above, because then the very
narrow fringes are more sensitive against instabilities;
furthermore, one has to spend correspondingly more
CCD-pixels, to cover the same field of view.

. The reconstructed image wave is sampled by a comparably

small number n.. of reconstructed pixels. n.. can be
derived for recording the hologram by means of a CCD-
camera with npi camera pixels as follows: at least 4
pixels have to sample one hologram fringe [45], to avoid
falsification of amplitude and phase. Since 3 fringes make
up one reconstructed pixel, one finds ng. < npix/12 for a
general object, and nr. < npix/4 for a pure weak phase
object.

The hologram is built up by
a finite number of electrons and hence always shows
quantum noise. Therefore, contrast and position of the
hologram fringes are not arbitrarily sharply defined; the
same is true for the derived amplitude and phase of the
reconstructed wave. The error in phase may be estimated
by means of the phase detection limit

V2 snr

il 47
N 7

8Plim =
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for an intended signal/noise ratio (snr), where C is the
fringe contrast of the hologram, and N the number of
electrons collected per reconstructed pixel [45-47]. The
phase detection limit is examined in more detail in the
following section.

4.5. Noise properties

_ ﬁsnr
. T CcIN
answers the question, which is the smallest phase difference

detectable at a given snr? This is elaborated in the following.
The contrast of the recorded hologram fringes

C = |/’L| CinelCinstCMTF

As mentioned above, the phase detection limit §¢jiy

4.8)

is given by the degree of coherence p of illumination in the
object entrance plane, practically given by spatial coherence
u’¢; longitudinal = temporal coherence need not be considered
here, because, in usual holograms with less than 1000 fringes,
it is always close to unity. Ciye is the loss of coherence
due to inelastic interaction, Cj,s the reduction of contrast
stemming from instabilities of the object, the microscope and
disturbances from the environment, e.g. AC-stray fields; Cyrr
describes contrast damping by the modulation transfer function
(MTF) of the CCD-camera.

The average number N of electrons collected in a
reconstructed pixel can be elaborated in the following way:
the total coherent current available at the degree of spatial
coherence ©* is given as

sC B
Icoh =—1In (’M ‘) k_2 (2.29)
with brightness B and wave number k of illumination. With
the hologram width w and the pixel size 1 /(2qmax) at resolution
¢max, the number of electrons per reconstructed pixel, reduced
by the detection quantum efficiency (DQE) of the CCD-

camera, reads as

N =i (|u]) 2 5

—— 1 DQE.
oK Cqmaur T PO

4.9)

¢ is ellipticity of illumination and t exposure time.
Finally,

/27 SNr Nyee

116] Cinet Cing Corrry/— In(| 1)) Ze67 DQE
(4.10)
results with the number n.. = 2gmaxw of reconstructed pixels.
In effect, the degree of spatial coherence controls the term

1
|| /=In (=]’

which renders a minimal §¢j;y, for |/ﬁ°’°pt’ =0.61.

Sorting out the parameters given by the microscopic setup
and by the disturbance level of the lab, one can define a figure
of merit for the quality of a holographic system as

V2
1] Cing Carrey/ — In(1])

S8@lim =

@.11)

Noise figure =

B
ek?

ET DQE,
(4.12)
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which may depend on the fringe spacing resulting in different
values for Cj, at the same disturbance level. This definition
allows the abbreviated form

Nrec

,
inel

S¢im = Noise figure snr (4.13)

which can be applied most easily once the Noise figure of

a holographic system is determined. In a good laboratory,
Noise figure < 10~ can be reached.

Amount of information in a hologram. A suitable measure
for the total phase information volume ascertainable from a
hologram can be defined as

Nrec 2 Cinel

PIV := = — ,
Sd¢im/2m  Noise figure snr

(4.14)

which means the number of reconstructed pixels multiplied by
the number of phase values distinguishable in the phase range
[0, 2] ataselected snr; evidently, PIV is a constant for a given
microscopic setup used for recording any hologram. The only
parameter depending on the object is the contrast reduction
by inelastic interaction, which is related to object thickness d
and mean free path for inelastic interaction Ay, by means of
Cinet = exp(—d/(2iner)) (equation (2.64)).

Evidently, at constant PIV, §¢j, can be adapted to the
needs of measurement by means of the field of view w
and resolution gn.x. For a given hologram width, there
is still the possibility of improving S¢;, by selecting a
smaller reconstruction aperture, which increases the size of the
reconstructed pixels and hence reduces n ., alas, at the cost of
lateral resolution g« [48]. Specific details are discussed in
the following sections for medium and high resolution.

4.6. Projection problems

As in conventional electron microscopy, the object exit wave
is a 2D-projection of a 3D-object. Therefore, interpretation of
a phase image in terms of the object is in general not unique
and difficult to perform. In the following, the problems are
discussed in more detail for electric objects.

The electric phase shift ¢(x, y) 0 Vproj (X, ¥)
(equation (2.43)) with Vpi(x, y) fobjeCt Vx,y,z2)dz
reveals only the projected structure of the object. Even in
the simplest case with constant potential V(x,y,z) = Vp
and constant thickness d = dj, the measured phase gives no
more than the product Vpdy. To delineate the potential Vj
distinctively, one has to measure the thickness dy by another
way. A very elegant way is to measure it from the amplitude,
which is damped according to exp(—d /(2Xine1)), reconstructed
from the same hologram [49]; however, this method depends
on the accuracy to which the mean free path A, is known. For
crystalline specimens, convergent electron beam diffraction
is an accurate method for specimen thickness determination;
it is independent from the f/Ajn-method and therefore a
combination of both would be optimal.

In any case, the phase can only be interpreted in a simple
way, if the potential V(x, y,z) does not change in the z-
direction, and if the object thickness is constant. To display
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Figure 28. Role of stray fields around an object for the measured
phase shift. Top: meridian section through a sphere (circle)
homogeneously magnetized in the viewing direction produces a
stray field in the opposite direction decaying with distance. Bottom:
The phase of a traversing electron wave is given by the respective
enclosed flux. Assuming the reference point on the far left, the
enclosed flux first increases in the negative direction. At the surface
of the sphere, it reaches a minimum. Then the positive flux in the
sphere shifts the phase to a maximum at the right surface. With
increasing distance, the phase approaches zero again. The phase
difference Ag is given by the flux inside the sphere reduced by the
stray flux in the shaded area. Because of rotational symmetry, the
measured phase difference is smaller by a factor 2/ compared with
the sphere alone. Consequently, to determine the magnetization in
the sphere, one has to evaluate 7 Ag. For a more general geometry,
the stray fields present are much more complicated to analyze.

from a phase-image at least the potential distribution exactly,
the thickness has to be correspondingly homogeneous. For
example, if an accuracy of 1% is needed, the thickness variation
also has to be smaller than 1%. This poses severe problems on
the preparation methods of the objects [50].

Furthermore, electric and magnetic stray fields may
expand around the specimen (figure 28). Above and below the
specimen in the z-direction, they contribute to the measured
phase values accordingly. In the case of simple geometries,
e.g. spheres, cylinders, etc, this can be accounted for under
evaluation of the phase image. The effect poses problems in
particular at medium resolution, because the corresponding
fields reach far out. At high resolution, the high spatial
frequencies delivered by the object are damped very fast
exponentially so that they do not contribute much.

Plane reference wave. Fields expanding in the (x,y)-
direction sometimes produce problems in that they also affect
the reference wave [51]. This means that the measured phase
distribution is in fact the phase difference distribution of the
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object wave with the reference wave also modulated by the
object.

Summary: performance of electron holography. Despite the
problems, to which solutions are still to be found, electron
holography offers substantial advantages over conventional
TEM imaging. First of all, the data representing the object
structure are complete in that one obtains

e amplitude and phase cleanly separated

e quantitative data gauged by means of an empty reference
hologram

e linear transfer of amplitude and phase from the object into
the reconstructed wave

e pure elastic data due to perfect zero loss filtering
(<107 eV).

Moreover, comprehensive wave optical image processing is
applicable for evaluation of all kinds of information encoded
in the object exit wave, since the whole wave is available. This
means

e a posteriori numerical correction of all coherent
aberrations

no crosstalk, i.e. amplitude and phase can be interpreted
in terms of physics and materials properties separately

e no delocalization leading to misinterpretation

e evaluation of amplitude and phase up to the respective
noise limit

full wave-optical evaluation also in Fourier space, e.g. by
single reflection analysis and nanodiffraction.

At the end, the performance limits are definitely given by the
incoherent aberrations, i.e. information limit, as well as by the
signal/noise limits determined by brightness of the electron
source, and instabilities.

5. Electron holography at mesoscopic resolution

According to the phase contrast transfer function PCTF =
sin x (¢) discussed in section 3, a conventional TEM is virtually
blind for large area phase objects: these objects contain mainly
spatial frequencies much smaller than the lower limit g, ~
Gscherz/4 of the Scherzer-band. For these and smaller ones, the
wave aberration x (g) is not effective and hence PCTF ~ 0
and ACTF =~ 1. This is true, in particular, at Gabor-focus
Dzgapor = 0.56 DZgcher, introduced specially for holography
at mesoscopic resolution [31]. Consequently, the image wave
agrees with the object wave, and hence the holographically
reconstructed wave can be interpreted directly, i.e. without
correction of aberrations, in terms of the object. Meanwhile,
holography turned out unrivalled for the analysis of electric
and magnetic microfields.

5.1. Specific aspects at mesoscopic resolution

Field of view and resolution. For large area structures,
e.g. magnetic or electric fields on the micrometre scale, one
needs large fields of view w, i.e. wide holograms. In principle,
every field of view can be realized, if the optics is set up
accordingly; in a usual TEM, of course, the free parameters
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for arranging lenses and biprisms according to the special
needs are very restricted. In any case, constraints hold in that
the hologram has to be grasped by the CCD-chip with given
dimensions and pixel number 7. At the minimum sampling
of 4 CCD-pixels per fringe, one obtains ng. < npix/12 for
a general object and ny.. < npix/4 for a pure phase object.
Since gmax has to be sampled by >2 pixels, a resolution
gmax = (Mrec/2w) can be reached. For a usual CCD-camera
with n,x = 1024, one gets ne. ~ 90 and n,. ~ 270,
respectively.

Examples for taking mesoscopic holograms. With the usual
position of the biprism in the selected area aperture holder, the
following values can be realized:

~
~

o w 10pum and gmax =~ 1/220 nm~! (Gmax =
1/74nm~") with the objective lens nearly switched
off (‘low magnification mode’) and the diffraction lens
working as first imaging lens.

w A 1 um and guax ~ 1/220m™! (Guax & 1/7.40nm™ 1)
with the objective lens switched off and the optional
‘Lorentz-lens’ working as first imaging lens. The Lorentz
lens is a small einzel-lens positioned below the specimen
such that the specimen is in space free from the magnetic
lens field. It was introduced by Zweck and Bormans [52]
for the investigation of magnetic specimen undisturbed
from outer magnetic fields. The Lorentz-lens has a
comparably long focal length of f = 23mm, and a
spherical aberration given by Cs &~ 8000 mm. The point
resolution is about gscher; = 1/2 nm and the information
limit giim 1/1.3nm. Image details smaller than
10 nm cannot be interpreted without aberration correction
because of delocalisation. The maximum magnification
reachable with the Lorentz lens is about 83000 at the
CCD-camera.

5nm < w < 200nm with 0.1nm ™" < gpax < 1nm™
under combined imaging by means of both objective lens
and diffraction lens excited slightly different from the
normal imaging mode.

%

1

5.2. Detection limits
The specific aspects of the noise figure.
2w

el CinstCMTF\/_ In (Juse]) % et - DQE
5.1

Noise figure =

are considered in the following. At medium resolution,
contrast reduction Cj,y by instabilities is not very critical,
since fringe spacing is large and comparably insensitive. This
allows the exposure time to be increased to, e.g., T &~ 10—
20s. Mainly, therefore, the phase detection limit is smaller
(better) at medium resolution than for high resolution. In the
Triebenberg Laboratory, values of Noise figure ~ 3 x 10~
can be reached.

More consideration than for instabilities is needed for
contrast reduction Cj,e by inelastic interaction to optimize
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signal/noise. To obtain a strong phase shift according to

P, 3) = 2T V(1. 3) = 27 P53, (52)
the object should be as thick as possible; this, however, only
makes sense if the object is homogeneous in the projection
direction. In any case, with thickness also the probability
for inelastic interaction increases and hence damps the fringe
contrast. Counterbalancing these two effects gives an optimum
object thickness. To be more explicit, assume an object with
an electric inner potential IP homogeneously distributed in the
z-direction over thickness d. Then the phase shift reads as

o(x,y) = 2nhivlp(x, V) di=gox.y)d.  (5.3)
With the inelastic contrast reduction
Cinel = exp(—d/2Aine1)) (5.4)
one obtains for the signal/noise ratio
e,y _ . @od Cinel ‘ 5.5)
S$Plim Noise figure snr 7
Consequently, one has to maximize the expression
d Cinet = d exp(—d/(2Aine1)) (5.6)
with respect to d, revealing
dopt = 2Ainel (5.7)
as the optimum thickness with Cj,eq = e~!, which would

give the best signal/noise properties in the reconstructed phase
image. For example, for silicon dyyy ~ 240nm at U, =
200k V.

Optimum phase detection for a given problem. For a given
electron microscope, the reachable phase detection limit

: nl‘eC
S¢im = Noise figure - snr

(5.8)
inel
is quantitatively evaluated in the following.

In the Triebenberg Laboratory, which is specially
constructed and operated to achieve the minimum possible
level of disturbances such as from ac-stray fields, mechanical
vibrations, acoustic noise and thermal instability, nearly the
best possible ambient conditions for electron holography are
realized. Using our Philips 200keV electron microscope
CM200/FEG-ST for medium resolution holography, we reach
Noise figure ~ 3.3 x 107*. For a specimen of optimum
thickness, i.e. Cipey = e~ !, and for an intended signal/noise
ratio snr = 3, the phase detection limit is related to the number
of reconstructed pixels by §¢@jim = 2.7 X 103 1ec (figure 29).

Aiming at measuring voltages, for example in semicon-
ductors, the minimum detectable voltage is given by

(5.9)
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Figure 29. Detection limits for electric potentials at medium resolution. Left: phase detection limit versus number of reconstructed pixels
given by 8¢jim = 2.7 x 1073 n,.. The more details in space, the less details in signal are detectable. Right: voltage detection limit according

3¢lim
Udopl

to§ ‘llim

with o the interaction coefficient. In silicon with optimum
thickness dop = 240 nm, the relation § Viyn = 1.54 x 101
follows. Consequently, to reach a voltage resolution of
8Viim = 0.1V, the number of reconstructed pixels must meet
N < 65. If, for example, the needed lateral resolution is
@max = 1nm~!, the width of the hologram must not be larger
than w = nec/(2gmax) & 32nm. This example shows that
in order to reach satisfactory results, all relevant parameters
have to be taken into account right from the beginning of the
holographic procedure.

Aiming at measuring magnetization, one finds the
magnetic flux

Dy = poMa® (5.10)

in one unit cell (cubic, lattice constant a) of ferromagnetic
material with magnetization M, which is the dipole density; g
is the induction constant. The magnetization can be estimated

by means of

KB
M = Natom”B -3
a

(5.11)
with 71,4¢0m the number of atoms per unit cell, and ng the number
of Bohr magnetons g 4;'r‘n - per aFom (mo rest mass of
electron). Therefore, at orthogonal orientation of M to the

electron wave, the phase shift produced by a single unit cell is
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Puc = Matom"B Ko (5.12)

2moa’
For example, inserting a = 0.4nm, nye, = 1 and ng = 1,
the magnetic phase shift of a single Bohr magneton follows as
@B = 4.4 x 107 rad. Consequently, to obtain a phase shift
of 27 /50, the cross-section of a cluster of cobalt (1ny0m = 4,
ng = 1.7) must contain 420 unit cells, i.e. it must have a
diameter of about 8nm. These numbers are in close agreement
with experimental results, such as the ones found in figure 46.
Smaller magnetic details can hardly be resolved (figure 30).

5.3. Applications for the analysis of electric and magnetic
fields

Principal considerations. The object exit wave is modulated
both in amplitude and phase. Since for modulation there is a
manifold of origins, the interpretation of the findings may be
difficult.

27

at optimum thickness. To reach 6V}, = 0.1V, nc < 65 is needed.
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Figure 30. Detection limits for magnetic fields. Phase shift of a
cobalt particle of quadratic shape in cross-section versus width D.
The hatched area indicates phase shifts smaller than 277 /50, here
assumed as detection limit. Evidently, lateral resolution is not
determined by the microscope but by the weakness of signals from
magnetic specimen. Magnetic details below 8 nm are buried in
noise.

Amplitude modulation. Occurs mainly by

e inelastic interaction as A(x,y) = 1 — T'(x, y) given by
T (x,y) = Exp[—t(x, ¥)/Ainet] With Ajpe; the mean free
path for inelastic interaction, and #(x, y) the thickness
distribution of the object along the direction of the electron
beam.

scattering into angles larger than the acceptance angle of
the optics (“scattering absorption contrast’). This should
be minimized by avoiding any tight objective apertures
when taking or reconstructing the hologram, because the
wave as a whole would be altered both in resolution and
signal strength.

interference effects in a crystal, such as dynamic effects
like extinction or bending contours. These can be
minimized by tilting away from crystallographic zone
axes.

Fresnel diffraction effects found in the exit face of thick
objects.

Phase modulation. The phase modulation is given by the
electric and magnetic fields following equation (2.37)

e e - -
(p=ZnE/Vobj(x,y,z)ds—ZnE/A(x,y,z)ds.
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Since the integrals cover the whole optical path from the
source to the detector, the phase contains the potential inside
and outside the object, such as stray fields. In general,
both the electric and the magnetic fields originate in the
specimen and, due to the 3D-Laplace equation, may reach
far out into the surrounding of the object. Therefore, the
integrals measure the whole field distribution provoked by
the object, including the stray fields. This has to be taken
into account, if one is interested in determining only the
intrinsic field inside the specimen. It is particularly a problem
at medium resolution, where the comparably large objects
produce far reaching stray fields. In any case, the phase
image provides only the projected potential Vyi(x,y) =
f Vobj(x, ¥, z)dz and enclosed magnetic flux ®(x,y)
55 g(x, v, z)dz, respectively. Therefore, from the phase
image, only the field data averaged in the direction of the
electron beam can be extracted quantitatively by division
with the thickness of the object; the thickness distribution
t(x,y) must be determined separately. This means that,
for complicated objects, additional thickness measurement is
needed, which sometimes may be gained from the inelastic
amplitude component [49]. For a complete 3D-determination
of the underlying fields, holographic tomography is the
solution, which is under development [53, 54].

Stray fields may also leak far sidewise and hence may
also influence the reference wave such that it is no more
a plane wave [55]. Since the reconstructed phase image
always represents the phase difference between object wave
and reference wave, this has to be taken into account for a
detailed analysis of the object wave. Stray fields do not present
a problem with the electric mean inner potential inside solids
stemming from averaging over the atomic potentials, because
the charges compensate on an atomic level and hence decay at
an atomic distance from the object.

Nevertheless, the strong advantage of electron holography
prevails in that large area phase contrast—which is completely
suppressed under conventional TEM-imaging—allows access
to indispensable structure components such as electric and
magnetic fields.

Electric phase modulation.
by

The electric phase shift is given

(pel(-xv y) = G/VObj(xa y7 Z)dz

with the interaction constant o (see section 2.3).
Possible contributions to electric phase shift are, for
example,

e mean inner potential

e contact potentials between different materials

e functional potentials, e.g. from dopants in semiconductors
e ferroelectric polarization

e potentials from charging under the beam

e adsorbed ions.

Additionally, dynamical phase shifts, e.g. at extinction
and bending contour lines occur. This may hamper the
interpretation in terms of the wanted information and hence
should be avoided by tilting out of zone axes.
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Holographic phése

Conventional, stained

Figure 31. T5-bacteriophage. Viruses are pure phase objects. They
are only visible under conventional imaging, if the structure is
decorated by staining or defocusing (left). Staining blurs the details
and gives rise to misinterpretation by selective adsorption of the
stain. Defocusing smears out the fine details. Right: phase image
reconstructed from a hologram taken in-focus of an unstained,
freeze-dried phase. Details are clearly visible, even windings of the
helix in the tail are suggested (arrows). From [56].

Examples: electric microfields. In the following examples,
typical applications of electron holography at medium
resolution are given.

1. Phase contrast due to inner potentials in materials. In
the life sciences, most objects are phase objects. Therefore,
e.g. viruses have to be stained with salt of heavy metals,
to translate their structure into an amplitude contrast. The
example shows unstained T5-bacteriophages in the phase
image reconstructed from a hologram, compared with a stained
one at conventional imaging (figure 31).

Likewise, soft matter materials in organic chemistry are
imaged in conventional TEM either by the help of staining,
or at a strong underfocus to achieve some phase contrast.
Alas, both methods bear a strong risk for artifacts in that
staining may be misleading by selective adsorption of the stain,
and defocusing damages resolution and interpretation of finer
details. Therefore, holograms of unstained specimen recorded
in focus, give completely new insight into the real structure of
these materials, in particular since large area phase contrast is
reality now (figure 32).

2. Variation of the mean inner potential in different
materials. The mean inner potential of a material varies
according to the concentration of constituents. Therefore, the
corresponding difference of phase shift reflects the difference
of concentration, as shown in the example of Si,Ge;_, in
figure 33.

3. Electric fields in biomineralization. At growth
processes, the question arises as to what controls the growth,
for example, the growth of apatite into the gelatine fiber
structure resulting, e.g., in a bone. Investigating such
intergrowth nuclei at different stages by electron holography,
surprisingly in the phase image stray fields of electric fields
show up, which strongly suggest that the gelatine fibers
carry electric dipoles (figure 34). These findings support the
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Figure 32. High impact polystyrene (HIPS). Top row: (a) Lorentz micrograph. The image is strongly blurred by Fresnel fringes, e.g. at the
edge, by the needed large defocus. The grey areas cannot be interpreted; the brighter lines are Fresnel diffraction phenomena at larger phase
gradients of the object. Large area information is missing. (b) Phase image of the same area. The dark region at the top left corner is
vacuum. The structure of the bright polystyrene (PS) inclusions separated by narrow darker regions of polybutadiene clearly shows
thickness variations. The phase shift due to PS amounts to 1.9 rad (inset at the right bottom) plus 25r, which results in a thickness of 137 nm
assuming an inner potential of 8.2 V. Bottom row: (¢) Lorentz electron micrograph and (d) electron phase image of high impact polystyrene
(HIPS) at the same sample area. Again, in the phase image one discerns thickness variations between and inside the inclusions, which
cannot be inferred from (d). From [57].

¢ (rad)
3.0 3.2 3.4

~—rt o
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Figure 33. Holographic materials analysis in nanometre dimensions. The layers of Si;_,Ge, with different Ge-content x cannot be
distinguished in the conventional micrograph (left). In the phase image reconstructed from the zero beam of a hologram, the mean inner
potential changes with x and hence produces a phase contrast, which allows the layers to be identified (middle). From the linescan along the
dotted line (right), the mean inner potential hence Ge-concentration can be traced quantitatively. The advantage over other methods such as
SIMS is the much better local resolution. From [59].
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gelatine fibres

Figure 34. Intergrowth nucleus of apatite in gelatine fibers. In the
conventional image (left), only the shape of the thick tip of the
nucleus (about 20 um long) can be seen. In the phase image (right),
the pseudo-coloured equi-phasal lines show the equipotentials of an
electric field emerging from the tip. This electric field, never seen
before, presumably stems from the gelatine fibers carrying electric
dipoles. It suggests the hypothesis that the growth of apatite into the
fiber bundles is controlled by the electric fields. Because the field of
view of a single hologram is too small to cover the whole tip, the
phase image is patch-worked from 4 holograms. From [60].

gate

source

Figure 35. Scheme of a field-effect transistor (FET). Current
between source and drain is controlled by gate voltage forming a
conducting inversion channel beneath the gate contact. The
connection from the metallic or poly-Si contacts (black) to the gate
is established by means of doped areas, which have to reach exactly
to the gate. For optimal function of the FET, precise shape and
doping distribution are needed. These can be measured by electron
holography.

hypothesis that intrinsic electric fields control the process of
biomineralization [60].

4. Dopant profiling and functional potentials in
semiconductors (figures 35-37). In principle, dopants
in semiconductors change the scattering properties of the
undoped material and hence produce a scattering absorption
contrast. However, at the usually extremely low doping levels,
this effect is not recognizable. Fortunately, the intrinsic field
distribution provoked by the dopants gives rise to a sufficiently
strong phase shift. This was shown by Pozzi ef al [61], and
brought to application by Rau ez al [62]. To make holography
a comprehensive and fully quantitative method, problems of
sample preparation and interpretation are under investigation
[63—-68]. Furthermore, in situ experiments applying voltages
and tomography for a full 3D-analysis are under development
[69]. Meanwhile, in face of the achieved degree of integration
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in functional components, this method is the only one able
to measure the small details of field distributions needed for
further improvements of semiconductor technology.

5. Electric polarization in ferroelectrics. Ferroelectric
phenomena were observed as early as 1962 [70, 71] in a
conventional TEM. However, only domain walls give rise
to a contrast, whereas the polarization, which is a phase
structure, remains invisible. Therefore, first experiments were
conducted to reveal the ferroelectric polarization [72], however
the findings and interpretation remain unclear, until [73, 74].
Nowadays, the polarization can be measured by means of
holographic phase images (figure 38); even the atomic dipoles
in ferroelectrics can be revealed, as shown in section 6.

6. Stray fields around charged nanostructures (figures 39
and 40). Electric nanostructures artificially prepared, e.g., as
electrodes or field emitters, can advantageously be investigated
by means of holography. With due care, the fields can be
measured quantitatively [75,76].

Magnetic phase modulation.
given by

The magnetic phase shift is

e
Pmag(x,y) = —2ﬂzd>(x,y)

with @ (x, y) the total flux enclosed by the electron waves from
the source to the detector, i.e. including stray fields along the
electron paths. A detailed analysis shows that

V@mag(X, y) Bproj(x,y) =0

holds with

+00

Eproj(xv y) = / E(X, yv Z)dZ

—0o0
the projected magnetic field. This means that Vg, (x, y),
Eproj and the electron trajectories form a righthanded
orthogonal system, and the phase contour lines agree with the
Byroj-lines.

Examples: magnetic microfields. 1. Magnetization in thin
films. Magnetic films or thin etched layers are interesting both
for basic science, such as correlation of crystallographic and
magnetic structures in magnetic shape memory alloys, and
technology, e.g. for memory devices. Usually, they can be
chosen sufficiently thick to provide a strong phase signal. The
phase-wrapping lines often give an excellent impression of
magnetization distribution and domain structure (figure 41).

2. Magnetization distribution in small particles.
Depending on size and shape, particles are magnetized in
single-domain or multi-domains. Single-domain particles
always show a strong stray field, whereas at multi-domains,
stray fields are weak or close to zero, if the domains form a
closed loop (figures 42-45).

3. Magnetic field by assemblies of Co particles (figure 46).
Here the field coupling between the particles is of highest
interest.

4. Remanence behaviour of arrays of magnetic dots.
Macroscopically, measurement of hysteresis gives only an
averaged information of a large ensemble. Holography gives
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Figure 36. MOSFET. Whereas in the amplitude—as in conventional TEM-intensity—only the metallic contacts can be seen, the phase
reveals also the doped areas. The phase values in the linescans give the projected potential of the pn-junction formed between the n-doped
area and the p-doped substrate. From [65]. (Cooperation with Dr Hans-Jirgen Engelmann, AMD Dresden and Dr Uwe Miihle, Qimonda
Dresden.)
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Figure 37. In situ investigation of pn-junctions (a) Specimen geometry used for applying external voltages to p—n junctions in sifu. Focused
ion beam milling has been used to machine a membrane of uniform thickness that contains a p—n junction at one corner of a 90° cleaved
wedge. (b) Reconstructed phase image acquired from an unbiased Si sample containing a p—n junction. (¢) Phase shift measured across a
p—n junction as a function of reverse bias for 390 nm crystalline thickness (thickness measured using convergent beam electron diffraction).
(d) Height of measured voltage step across junction as a function of reverse bias. From [69].
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Figure 38. Ferroelectric domains in BaTiO;. Top: only the in-plane component of the ferroelectric polarization produces a phase shift.
Bottom: left: phase image of ferroelectric domains. The bands reveal in-plane polarization oriented as indicated, whereas the flat center of
each band carries an out-of-plane polarization (‘0’). The typical shoulders found in the linescan (right) suggest the domain structure in the

cross-section shown at the bottom of the linescan.

Figure 39. Electric field around biased tungsten tip. The phase
image shows contour lines, which do not agree with the electric
field, because the reference wave is also modulated, i.e. by the stray
field. The experimental result (top) is modeled in good agreement in
bottom. Tip voltage 7.5 V. Reprinted from [75], with permission
from Elsevier.

deep insight into the details of the magnetic behaviour under
and after exposing to external fields, in dependence on particle
size, arrangement, etc (figure 47).

5. Embedded Co/Sm-particles. In the case of Co/Sm-
particles by ion-implantation it is shown that the arising
particles of diameter of 30 nm are magnetic. The findings
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suggest that the arising magnetic dipoles are oriented randomly
(figure 48).

6.  Magnetic flux distribution in superconductors.
The distribution of magnetic flux lines under an external
magnetic field is most interesting for the understanding of
superconductors (figures 49 and 50).

6. Electron holography at atomic resolution

At atomic resolution, the principles of holography elaborated
so far also apply. However, they have to be specified
according to the special requirements showing up at the
intended resolution of 0.1 nm; these arise from the facts that
much more complicated details of interaction of the electrons
with the object have to be considered, and that the aberrations
dominate the imaging process.

6.1. Electron—specimen interaction at atomic dimensions

In transmission electron microscopy, there is an extremely
strong interaction of the electron wave with the Coulomb
potential of the atoms. On the one hand, it is a blessing,
because a strong signal is a prerequisite for measuring very
tiny object properties at atomic resolution. On the other hand,
itis acurse, because the electron is multiply scattered and hence
the scattering event loses its uniqueness. As a result, the object
exit-wave represents a complicated two-dimensional summary
of all scattering events along the electron beam. This can only
be understood by numerical simulation, for example by means
of the EMS-package [85].

As long as the specimen has a thickness of only a few
monolayers, the approximation of single scattering holds,
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Figure 40. Electric field around biased carbon nanotube. For this
study of field emission from carbon nantubes, the phase lines
represent equipotentials, since the reference wave can be assumed
comparably flat. The field rapidly decays with distance from tiny
tip, and the reference wave is 2 um away. From [76].
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vacuum

phase image as reconstructed

100 nm

unwrapped phase image

Figure 41. Magnetic phase shift in ferromagnetic domains in cobalt
thin film. Left: the phase image as reconstructed shows
phase-wrapping lines. Between successive lines the enclosed
magnetic flux changes by % /e. Therefore, assuming constant
thickness and homogeneous magnetization values in the specimen,
and disregarding stray fields above and below the specimen, the
phase-wrapping lines can be interpreted as the lines of the intrinsic
B-field (arrows). The transition black=-white and white= black
gives the direction of the phase-gradient, which forms a
right-handed system with the B-field and the direction of the
electron beam. Right: unwrapped phase image with schematic phase
profile suggesting the indicated 180°-domain structure.
(Cooperation: W Neumann and R Otto, HU Berlin.)
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(a)

Magnetization

Figure 42. Magnetization in a cobalt smoke particle. (a) Schematic
distribution of the magnetization forming a closed loop; (b) Phase
image. Two kinds of phase contours appear: narrow fringes parallel
to the particle edges indicate thickness contours, and circular fringes
in the inner region indicate in-plane magnetic lines of force in /1/2e
flux units due to the twofold phase amplification. From [77].
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Figure 43. Disc of NigyFey. Since the circular disc is evenly 20 nm
thick, the circular contour lines and the linescan represent the
projected B-field lines of the magnetization. The flux is completely
closed. From [78].

which is the basis for kinematical theory. Then, amplitude
and phase of each reflection in Fourier space depend linearly
on the specimen thickness. This can be displayed in so-
called beamplots as shown in figure 51. Additionally, it is
observed that kinematically forbidden reflections, as, e.g.,
found in Fourier spectra of centrosymmetric crystals, are
not excited. All the waves, emanating from reflections in
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Figure 44. Magnetization in permalloy particles. Magnetization
arises in different shapes. Top: S-shape phase amplification ,
bottom: C-shape. Cooperation of Josef Zweck, Regensburg. For
details see [78].

amplifude

phase

Figure 45. Nickel-filled nanotube. Ni incorporated into a carbon
nanotube can easily be recognized in the amplitude image. The
phase image shows that, also at these small dimensions, the Ni-rod
is magnetic exhibiting a dipole-like magnetic stray field. The
magnetic field produces an antisymmetric phase distribution across
the rod (see figure 28), whereas an electric field would produce a
symmetric one. The undulations in the phase contour lines are an
artifact stemming from structure noise of the supporting carbon foil.
The fine phase lines inside the nanotube cannot be interpreted easily.
They stem from the phase shift mainly from the mean inner
potential and magnetization of the nickel, however, the details are
undersampled and hence not resolved. From [79].

Fourier space, form the object exit-wave in real space by
coherent superposition. In kinematical approximation, the
phase shift of atomic columns in real space increases linearly
with increasing specimen thickness, which is particularly
interesting for material analysis with atomic resolution.

With increasing specimen thickness, however, the
probability of multiple scattering rises significantly as
described by dynamical theory. In the beamplots (figure 59),
strong deviations from linear dependence on specimen
thickness are observed in amplitude and phase of each
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Figure 46. Rings of cobalt-particles. The Co-particles form
magnetic rings with flux-closure of the stray field. Phase
amplification 128. The phase shift by one particle is about 277 /10.
From [80]. Copyright 2004 Wiley-Liss. Reprinted with permission
of Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc.

Figure 47. Array of Cobalt-dots (20 nm thick) on Si at remnant
states: (@) SEM micrograph. (b) and (c¢) magnetic phase shift at two
remnant magnetic states. Contour spacing 0.033 rad: () after
saturating dots upwards and then removing the external field.

(c) after saturating dots upwards, applying a 382 Oe downward field
and then removing the external field. Reprinted with permission
from [81].

reflection. Also reflections, which are kinematically
forbidden, may have a non-negligible excitation. =~ With
increasing specimen thickness, amplitude minima of the zero-
beam are observed. They are found as the so-called extinction
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vacuum

Figure 48. CoSm-particles implanted in Si. Some of the
CoSm-particles, ion-implanted in 4H-SiC, show magnetic dipole
appearance. The strength of the dipoles differs, because only the
in-plane component of magnetization shifts the phase. The
orientation of the dipoles seems random. From [82].

Figure 49. Fluxon lattice in superconducting Nb-film. After cooling
to T = 4.5 K, under an external field of 15 mT (150 Gauss) applied
under 45° to the film plane, the vortices (encircled) arise forming a
lattice. Phase amplification 16*. Reprinted with permission

from [83]. Copyright 1993 by the American Physical Society.

thicknesses, where most of the beam intensity is found in
diffracted reflections. This attenuation of the zero-beam gives
rise to a predominant interference of diffracted reflections in
real space, which may yield artificial fine details with doubled
periodicity in amplitude and intensity images hampering
the interpretability. These so-called half-spacings are often
referred to as lattice resolution of the electron microscope [86].

Interestingly, since these half-spacings do not occur in
phase images, the interpretability in terms of atom species and
positions is significantly improved. Additionally, provided an
information limit of about 0.1 nm is given, a phase jump of
almost 277 is observed at the extinction thickness, which is a
very sensitive guideline for specimen thickness determination
(figure 52).
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Vacuum

Figure 50. Single fluxons issuing from superconducting Pb-surface.
Cross-sections of vortices under an external magnetic field at

T = 4.5K. Top: 200 nm thin Pb-layer. Right: single fluxon 4 /2e;
left: antiparallel pair of two fluxons. Bottom: the 1000 nm thick
Pb-layer accommodates larger vortices consisting of an integral
number of bundled fluxons. Phase amplification 2*. Reprinted with
permission from [84]. Copyright 1991 by the American Physical
Society.

6.2. Benefits of atomic resolution holography

Not only for mesoscopic but also for atomic applications, off-
axis electron holography offers advantages for quantitative
analysis, when it is compared with conventional HRTEM,
namely the ability of zero-loss energy-filtering, linear wave
acquisition, and a-posteriori correction of coherent aberrations
during hologram reconstruction.

Due to the principle of an object-modulated electron
wave interfering with a coherent unscattered reference wave,
the recorded image wave can be regarded as exceptionally
well zero-loss energy-filtered by 10~'> eV. Electrons, which
have undergone some inelastic event such as thermal diffuse
scattering (‘phonon scattering’) or plasmon scattering, are
‘discarded’ from the coherent wave field showing up as
‘absorption’ like the effect of Cj,. Since most of the
image simulation programs describe inelastic scattering as
absorption, in reality they do not deliver the intended
conventional intensity images, instead they provide us with
the amplitude image reconstructed from an off-axis hologram.
This is because, in conventional images, the inelastic electrons
still contribute by a possibly strong background, whereas in
holography they are really ‘absorbed’ by the filtering property.
In any case, the available simulations are most favorable for
the quantitative interpretation of holographically reconstructed
object exit-waves.

Unlike conventional micrographs, the reconstructed
image wave is purely linearly transferred due to its indirect
encoding as modulation of interference fringes. The Fourier
spectrum of the corresponding hologram contains both the
linear sideband and the non-linear centerband (figure 53).
Except for inelastic contributions forming, e.g. Kikuchi-bands,
the intensity of the sideband corresponds to the diffraction
pattern in the electron microscope, only limited by the damping
envelope functions due to incoherent aberrations. Thus, in
combination with the usage of intrinsically highly linear slow-
scan CCD-cameras, the evaluation of electron holograms
allows a quantitative analysis both in real and reciprocal space
at atomic dimensions.
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Figure 51. Beamplots of GaAs in the [1 1 0]-orientation simulated by means of a full dynamical simulation using the EMS program
package [85] for a TEM with 300kV acceleration voltage. Only the zero-beam and the least diffracted (1 1 1)-reflections are shown.
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Figure 52. Simulated object exit-wave in amplitude and phase of an
[110]-oriented GaAs-crystal with a wedge-angle of 45°. Only
incoherent aberrations for a Philips CM30FEG UT TEM are taken
into account. Because of the wedge-shaped geometry, the distance
from the thin crystal edge can be directly interpreted as specimen
thickness.

6.3. Special aspects for acquisition of atomic resolution
holograms

Fringe spacing. By means of the voltage Uy at the biprism
filament, the carrier frequency of the interference fringes
has to be chosen as g > 2,...,3 @ma. This guarantees
a clear separation of centerband and sideband in reciprocal
space (figure 53). Most of the high-resolution holograms are
recorded with fringe spacings of about spo; = 1/g. = 0.05 nm
or smaller, which is a challenge concerning disturbances and
instabilities.

Width of hologram, number of fringes and pixel number of
CCD-camera. A prerequisite for quantitative analysis is the
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recording of the image wave as accurately as possible for all
spatial frequencies transferred into the image plane well above
noise. Therefore, several aspects have to be considered during
acquisition of high-resolution electron holograms.

In order to catch all information needed for correction of
the coherent wave aberration, the field of view recorded by the
CCD-camera must be larger than

Wmin = 4 psf (6.1)
with the diameter psf of the point-spread-function PSF(F).
This condition is equivalent to the well-known Rayleigh-
criterion. With g. > 2, ..., 3 ¢max, the minimum number of
needed hologram fringes results as nginge = 8, ..., 12gmaxpst.
Since each fringe has to be sampled by 4 CCD-pixels,
the pixel number of the CCD-camera must be larger than
npix = 32, ..., 48¢maxpsf. This means that finally the CCD-
camera determines the resolution limit gn,ax achievable by high
resolution electron holography.

Adaptation of the hologram geometry. To control fringe
spacing and width of hologram in terms of the object, the
respective formulae (2.12) and (2.13) have to be related from
the image plane to the object plane. For this, one has to divide
by the magnification M = (a + b)/f, with the distances a and
b given in figure 1, and f focal length of the objective lens.
Related to the object plane one obtains for the spatial frequency
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Figure 53. Top: atomic resolution off-axis electron hologram of an
[110]-oriented Ge/CdTe-interface. The fine interference fringes
with a spacing of s = 0.054 nm can be observed in the magnified
insert. The dotted square indicates the area displayed in figure 55.
Bottom: the Fourier spectrum consists of centerband and two
sidebands. They are sufficiently separated by the carrier frequency
ge = 1/s = 18.5nm™"'. The centerband shows pairs of reflections,
where the inner reflection belongs to CdTe, the outer one to Ge. Due
to the small thickness of the sample, kinematically forbidden
reflections of Ge, indicated by arrows, are in fact missing in the
sideband, whereas the appearance of these reflections in the
centerband proves the non-linearity of image intensity.

of the hologram fringes

2yoUsa
= 6.2
c v (6.2)
and for the hologram width
2yoUsb
U, S (6.3)
a+b a

Since f =~ 1 mm does not change much under the comparably
small defocus values of some 100 nm, the only free parameters
are the filament voltage Uy and the distance b, which can be
set by means of the excitation of the subsequent intermediate
lens. Because g. does not depend on b, both g. and w can be
controlled independently by means of Uy and b.

Optimum focus of objective lens. Since coherent aberrations
have to be corrected anyway a-posteriori, the focus can freely
be optimized for taking holograms. It turns out that there is an
optimum focus for holography [31] given as

).

Gmax

pgRimm = —0.75 C, ( (6.4)
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where gmax denotes the highest desirable spatial frequency to be
recorded. Generally speaking, this focus keeps the gradx (q)-
function as low as possible over the whole range of spatial
frequencies [0, gmax]. This offers the following advantages:

1. At optimum focus, the spatial coherence envelope is
tuned such that the information limit gj,g, of the electron
microscope is increased to about 2 ¢gsher- Then, the
information transfer is mainly limited by the temporal
coherence damping envelope.

. At optimum focus, the diameter of the point spread
function is minimized as

)3

(‘disc of least confusion’). Therefore the needed hologram
width, which is about a quarter of the one at Scherzer-
focus, is the smallest possible for gma.x. This saves
precious coherent electrons and pixel number of the CCD-
camera.

. At optimum focus, the pixel number needed in Fourier
spaceis also minimized, since regions with steep grad x (q)
would need many pixels to avoid undersampling. Here,
the combination of a low-Cs objective lens with the
optimum focus for holography provides a wave aberration
with a moderate gradient, which is less demanding in
terms of sampling. Consequently, a CCD-camera with
1k x 1k (2k x 2k) pixels allows the reconstruction of
sidebands with 256 x 256 (512 x 512) pixels and hence
a resolution of 0.13nm (0.1 nm) for a 300kV electron
microscope with a spherical aberration of about Cy =
0.62 mm [87].

4. At optimum focus, the phase detection limit is improved:

qmax

k

1
pst = 3C, ( (6.5)

Phase detection limit.
detection limit

Besides lateral resolution, the phase

) SNI Myec
8¢ = Noise figure ————
inel

(4.13)

is the most important figure of merit for hologram quality and
hence for the desired object exit-wave. It should be small
enough to allow discerning single atoms at snr = 3.

Of special interest is the contrast factor Cj, of inelastic
scattering. For reasons of interpretability also in holography,
the objects should be thinner than the first extinction thickness
of the zero-beam, commonly less than 7—12 nm; this thickness
provides predominantly kinematic interaction allowing a
direct interpretation of phase distributions in terms of atomic
columns. At these thicknesses, there is only a low probability
of inelastic scattering (neglecting amorphous surface layers)
hence, for the sake of simplicity, Cipey & 1 is a reasonable
assumption.

Last but not least, the number of reconstructed pixels
Nree = 2¢maxW 18 given by intended resolution g, and the
hologram width w. Because a minimum hologram width
Wnin (equation (6.1)) is needed, the minimum number of
reconstructed pixels iS frec min = 2¢maxWmin- 1nserting the
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Figure 54. Procedure for the correction of coherent aberrations. The phase curvature added to the image wave simulates the cylindrical
wave front of the elliptically shaped holographic illumination. Multiplication of the numerically generated phase plate xnunm(g) to the
Fourier spectrum and inverse Fourier transformation yields the corrected object exit-wave, after the artificially introduced phase curvature
has been subtracted. Aberration parameters: C; = 0.623 mm, D, = —154nm, A, =4nm, o, = 30°, Az = 1 um, ax3 = —15°.

relations set up at optimum focus, one finds a simple relation
for the minimum needed number of resolved pixels

)4
for a hologram recorded in a TEM with Scherzer-resolution

Gscherz- From this, one obtains a simple estimate for the phase
detection limit
( ) 4

Inserting reasonable values for our Philips CM30FEG UT/
Special-Tubingen TEM with Scherzer resolution gscher; =
5.9nm~', Noise figure &~ 4 x 10~* at Triebenberg lab, and
neglecting inelastic scattering Cine; & 1 for very thin objects,
a phase detection limit of

Gmax

Nyee min = 10.12 ( (6.6)

{scherz

snr qmax

QI‘CS

8¢ = 10.12 Noise figure

6.7)

inel

2

= (6.8)

7
is reachable for gmax = 10nm~" at a signal-to-noise ratio of
snr = 3. Thisis sufficient to identify in the reconstructed phase
image single heavy atoms like e.g. gold with a phase peak of
27 /12; however, single light atoms such as oxygen having a
phase peak of 27/50 are buried in noise.

6.4. Correction of coherent wave aberration

At atomic resolution, the reconstructed image wave ima(7)
consists of both low and high spatial frequencies. However, as
shown in section 3, spatial frequencies larger than ggcper,/10
are strongly falsified by the coherent wave aberration x (g) of
the objective lens, which shows up in the image wave as a
complicated scrambling of amplitude and phase as well as a
delocalization of object information, both given in real space
by the point-spread-function PSF(r) = FT~'{exp(—ix (9))}.
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In particular, this strongly hampers the interpretation of non-
periodic object structures such as grain boundaries, interfaces
and small clusters. Therefore, a posteriori correction of
aberrations is one of the most interesting aspects of holography.

In the following we distinguish between the wave
aberration ypmic(¢) effective in the TEM during recording the
hologram, and ),um(g) modeled for numerical processing of
the reconstructed wave.

For correction of the coherent wave aberration xmic(q),
the aberrated image wave ima(7) is back-propagated to the
object exit plane to obtain the object exit-wave o(7) according
to the scheme in figure 22, [88-91]. This is achieved by
means of acomputer program establishing a virtual microscope
with arbitrarily configurable imaging properties. In particular,
arbitrary wave-optical transfer properties of the objective
lens can be modeled by a numerically generated phase plate
Xnum (g) [92]. The actual aberration correction is performed
by multiplication of the image wave’s Fourier spectrum with
exp(ixnum(q)). By inverse Fourier transformation the desired
object exit-wave o(F) = a(¥) exp(ip(r)) results, which is free
from coherent wave aberration (figure 54). It should be noted
that higher spatial frequencies are still damped by incoherent
aberrations given by the damping envelope functions for partial
spatial and temporal coherence. Due to non-negligible noise
contributions, the experimental object exit-wave is normally
not deconvoluted from these inelastic aberrations; instead, they
are considered in corresponding object exit-wave simulations.

Accuracy requirements. The accuracy of the numerically
generated phase plate xnum(g) needed for truthful modeling of
the wave aberration y;.(g) is given by the modified Rayleigh-
criterion

N N T
|Xmic (q) — Xnum (q)| < ) (69)

6

which has to be fulfilled for all involved spatial frequencies 4.
This criterion makes sure that the residual cross-talk between
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Figure 55. Summary of all reconstruction steps. The correct dumbbell-contrast in amplitude and phase of the object exit-wave, which
cannot be observed either in the reconstructed image wave or in the hologram, indicates the successful correction of coherent aberrations.
For improved visualization, only a small area (dotted square in figure 53) is displayed in all reconstruction steps. The waves are slightly

noise-reduced by Bragg-filtering.

amplitude and phase is sufficiently small (figure 18), i.e.

Isin (xmic (@) — Xnum (9))] < 0.5. (6.10)

This requirement has to be met not only in holography but in
all atomic resolution imaging techniques. It poses a challenge
in that currently an optimum-search has to be conducted in
a 10-parameter space: 8 aberration coefficients (equations
(3.34)—(3.38) plus scaling in Fourier space as well as the exact
wave number ko 1/A have to be determined with such a
high accuracy. For example, to achieve 0.1 nm resolution with
a300kV TEM, the coefficient for spherical aberration has to be
known at about 0.1% accuracy, and the coefficients for defocus
and two-fold astigmatism better than 0.5 nm [93].

Evidently, one of the key problems of all atomic resolution
methods is the extremely precise determination of the coherent
wave aberration ;. (g), both for a posteriori correction and
for fine-tuning a hardware corrector. Therefore it would be
very helpful to make use of additional criteria derived from
general properties of aberration-free imaging, which are not
specific to the object structure under investigation. Suitable
criteria such as ‘a weak phase object does not produce any
amplitude contrast’ or ‘delocalization is minimal’ should be
applied.

Using a priori knowledge about the object of at least a part
of the field of view, special strategies have been developed for
aberration assessment: utilizing the criterion that a very thin
amorphous edge of a specimen is in good approximation a
weak phase object, showing no amplitude contrast at ideal
imaging, the amplitude contrast can be minimized; this is
a well-established correction guideline, however only for
symmetric aberrations such as spherical aberration and defocus
[90,94]. This minimization can be automated by means of a
genetic algorithm [91]. Antisymmetric aberration coefficients
are normally determined by trial and error using the virtual
microscope program [90, 92], which allows an interactive
correction of the coherent wave aberration. In comparison
with simulated object exit-waves of crystalline samples, all
aberration coefficients are tuned such that both amplitude
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and phase of the experimental object exit-wave is in good
agreement with the simulated ones.

The correction of the coherent wave aberration not
only performs an unscrambling of information transfer and
a neutralization of delocalization but it also enhances the
phase signal by recollecting the phase information from the
point spread function back to the point of origin. Since
aberration correction opens the imaging aperture, Geiger and
Lichte [95] were able to resolve the comparable weak oxygen
atom columns in the phase image of a YBa,Cu3O; HTc-
superconductor.

Correction of distortions provoked by elliptical illumination.
The elliptically shaped electron source used for hologram
acquisition imposes an additional need for correction: this
special illumination mode gives rise to a variation of beam
directions over the field of view, alas, yielding loss of
isoplanicity. Therefore, coherent aberrations are successfully
corrected only for a small part of the field of view. These
imaging artifacts caused by the elliptically shaped illumination
are considered in the aberration correction process by means
of a phase curvature, which models the shape of the
illuminating wave front (figure 54) [96]. Applied in real
space during aberration correction, coherent aberrations are
compensated for the whole field of view yielding an improved
spatial resolution up to the information limit of the electron
microscope, which allows a direct interpretation of the
resulting object exit-wave regarding the object structure under
investigation (figure 55).

6.5. Quantitative analysis

The reconstructed object exit-wave is normally displayed in
the form of two images as amplitude and phase. However, the
object exit-wave is more than simply an image: it represents
a two-dimensional array of quantitative complex data offering
the possibility of analyzing the data both in real space and in
reciprocal space.
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Figure 56. Appearance of crystal tilt in sideband. Series of five sidebands, where the corresponding holograms have been recorded under
different crystal tilt, in steps of 0.1° about the horizontal tilt axis. The sideband in the middle shows a good orientation of the GaAs-crystal
on the [1 1 0]-zone-axis. Evidently, crystal tilt can be examined under reconstruction from symmetric excitation of reflections.

Figure 57. Holographically reconstructed object exit-wave
(noise-reduced) in amplitude (display range: 0—1.4) and phase
(display range: 0-2m) of a wedge-shaped GaAs-crystal in the

[1 10]-orientation. The thinnest edge is located in the lower left half
of the field of view, and the specimen thickness increases to the right
according to its 45° wedge-angle. In the magnified areas, the upper
parts have been replaced by a simulated image showing good
agreement in both structure and quantity. The numbered boxes
indicate the areas, from which the nanodiffraction patterns, shown in
figure 58, have been determined.

The accurate zone-axis orientation, important for
quantitative analysis such as materials characterization at
atomic dimensions, can already be judged from the Fourier
transform of the electron hologram. A small residual
misorientation shows up as an asymmetric excitation of
reflections in the sideband (figure 56), which is similar to
effects observable in diffraction patterns taken at the electron
microscope. The sideband, however, offers quantitative
measures, whereas in the electron microscope the exact zone-
axis orientation can only be found by subjective estimations of
reflection intensities.

Holographic nanodiffraction. Local variations of crystal
tilt and thickness can easily be visualized by holographic
nanodiffraction. By means of anumerical mask, arbitrary areas
as small as a few unit cells are selected from the object exit-
wave in real space, Fourier transformed and squared yielding
diffraction patterns from these small areas (figures 57 and 58).
They reproduce all the effects of asymmetry and different
excitation of reflections caused by non-centrosymmetric
crystals, local tilt and thickness variations.

Imaging in the light of single reflections. The reconstruction
in the light of single reflections allows the analysis of their
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contribution to the object exit-wave in real space. Here, a
single reflection is masked out and centered in Fourier space,
inverse Fourier transformed and displayed as amplitude and
phase. This is of special interest for wedge-shaped samples,
where the excitation of reflections can be measured depending
on the specimen thickness and compared with corresponding
object exit-wave simulations (figure 59). These experimentally
obtained beamplots show all theoretically known effects of
dynamical interaction.

Stobbs factor problem. In general, quantitative comparisons
of lattice fringe contrasts in image intensities with
correspondingly simulated ones have the result that the lattice
fringe structure is well-reproduced by the simulation but the
contrast is about a factor of 3—5 higher in the simulation. This
contrast mismatch is also known as Stobbs factor problem. It
severely hampers the possibility of materials characterization
with atomic resolution. Many possible reasons for the contrast
mismatch are in discussion, and apparently there are many
contributions.  Fortunately, all holographic investigations
indicate that the reconstructed object exit-wave is hardly
affected by the Stobbs factor. These findings suggest a major
contribution to the contrast mismatch of inelastically scattered
electrons due to e.g. thermal diffuse scattering since the
holographically reconstructed object exit-wave is extremely
well zero-loss energy filtered. Consequently, a sophisticated
materials analysis with atomic resolution is within reach.

6.6. Applications

Materials analysis on the level of atoms. In order to solve the
problem ‘which atoms are where’, two prerequisites have to be
fulfilled: a sufficient spatial resolution in combination with a
reasonable signal-to-noise ratio. In holography, both quantities
are characterized by the maximum spatial frequency gmax
available after reconstruction, and the phase detection limit
S¢im giving an estimation for discernibility of neighboring
atom columns. For holographic materials analysis, a challenge
is the characterization of zinc-blende structures in [110]-
projection, where typical pairs of atom columns show up,
the so-called dumbbells, with a distance less than the point
resolution of most TEMs. Within a dumbbell, each column
is exclusively built up with one specific atom species of
the crystal under investigation. The task of holographic
materials analysis is the identification of atom species within
the dumbbell structure.

Figure 60 shows the holographically reconstructed object
exit-wave of a cross-sectional ZnSe/BeTe-multilayer. The
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Figure 58. Nanodiftraction patterns determined from the areas shown in figure 57. Due to the increasing specimen thickness from left to
right, the excitation of reflections varies according to dynamical diffraction theory.
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Figure 59. Beamplot of 11 1-reflection in amplitude and phase as
determined from the object exit-wave of GaAs shown in figure 57.
The filled areas represent the experimental data, whereas the line is
the corresponding simulation. The modulations represent the
variations of reflection excitation due to increasing specimen
thickness known from dynamical diffraction theory.

BeTe Zn BeTe Zn

Figure 60. Holographically reconstructed object exit-wave of a
cross-sectioned ZnSe/BeTe-multilayer in the [1 1 0]-orientation.
The separate layers with a thickness of only a few monolayers can
easily be identified both in amplitude and phase. (Cooperation with
Dagmar Gerthsen, Karlsruhe, and Andreas Waeg, Braunschweig.)

different layers can easily be identified, because the Be-
columns are hidden due to their very small weight compared
with the Te-columns. A slight atomic intermixing at the
interface, expected from layer deposition, causes a structural
transition zone of about two monolayers.
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Figure 61. Phase image of the reconstructed object exit-wave of the
[110]-oriented GaAs shown in figure 57. The different atom
species within the dumbbell structure can be clearly distinguished
due to their characteristic phase shift.

In [110]-oriented GaAs, both types of atomic columns
within the dumbbell structure can hardly be distinguished,
because there is only a small difference in atomic numbers
for Ga and As with Zg, = 31 and Z,; = 33. From object
exit-wave simulations, it is known that only the phase of the
electron wave is sensitive enough to identify the difference
of both atomic columns due to the stronger phase shift of
the As-column [97]. The phase difference between both
atomic columns becomes larger with increasing specimen
thickness. According to our experiences, Ga and As columns
can satisfactorily be discriminated at a specimen thickness
of over 10 nm, which is slightly beyond the first extinction
thickness of the zero-beam (figure 61). At this thickness, a
phase difference of 27/12 is calculated by means of a full
dynamical simulation, which is larger than the phase detection
limit of our CM30FEG UT/Special Ttibingen TEM and hence
detectable. This is caused by amorphous surface layers, which
additionally modulate amplitude and phase of the object exit-
wave. Nevertheless, the phase of the object exit-wave is
sensitive enough to allow materials characterization on an
atomic level currently unreachable by analytical methods.
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Figure 62. Phase of an object exit-wave reconstructed from a
hologram of BaTiOj3 in the [1 0 0]-orientation. At this special
specimen thickness, the phase signal stemming from dynamical
diffraction is very small, whereas a strong phase shift due to atomic
dipoles can be observed. The phase signal becomes larger to the
right, because the specimen thickness gradually increases.

Atomic dipoles in ferroelectrics. With improving spatial
resolution and phase detection limit, one can think about
challenges beyond the question ‘which atoms are where’. An
even more demanding question is the determination of local
charge density distributions and bonds, important for a basic
understanding of solid state physics on an atomic level.

A first step in this direction has already been taken with
holographic analysis of ferroelectric crystals such as BaTiO3
on an atomic level. Here, the asymmetric local charge
distribution plays an important role: caused by a tiny tetragonal
distortion, the centers of positive and negative atomic charges
are shifted against each other within a unit cell such that as a net
effect an atomic dipole is built up between two virtual charges
with opposite signs. The in-plane component of such an atomic
dipole causes a characteristic phase difference at these two
charges, when a plane electron wave penetrates a thin foil of
the ferroelectric specimen. For BaTiOs, a phase difference
of 27/30 per unit cell thickness is expected, however, too
small for investigations of a single dipole with present TEMs.
Fortunately, real-world samples have a foil thickness of several
monolayers, where in projection the phase shift is significantly
increased by adding up several atomic dipoles. Therefore,
atomic dipoles have already been identified in phase images
of BaTiOs (figure 62) using high-resolution off-axis electron
holography in our CM30FEG UT/Special Tubingen TEM.
Moreover, ferroelectric nanodomains with the size of only a
few nanometres have been found in thin specimen areas, only
explainable as a metastable state, which is not expected in bulk
crystals.

6.7. Future challenges

Improvement of Signal/Noise by a Cs-corrector. Off-axis
electron holography offers unique possibilities of recovering
completely the aberration corrected object wave also with
uncorrected microscopes and hence would not need a
Cs-corrected microscope for improved lateral resolution.
However, in particular at atomic resolution, the performance
of holography is affected by the aberrations of the recording
TEM in that the Signal/Noise-properties (‘phase detection
limit’) of the reconstructed wave are damaged. To improve not
only lateral resolution but also signal resolution, we realized
off-axis electron holography with a C;-corrected TEM [98].
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It turns out that the phase detection limit improves by a
factor of four at atomic resolution. A further advantage
is the possibility of fine-tuning the residual aberrations by
a-posteriori correction. Therefore, combination of both the
methods, i.e. Cy-correction of a TEM and off-axis electron
holography, opens new perspectives for a complete TEM-
analysis on an atomic scale.

Interpretation: need for better modeling. The usual
simulation programs use free-atom models, mostly the
Weickenmeier—Kohl models [99]. While this is appropriate
to interpret the position of the atom positions even at sub-
Angstrom resolution, insufficiencies are expected for the
correct modeling of intrinsic fields on an atomic scale, such
as those occurring in ferroelectrics. A solution is offered
by ab initio calculations which also consider the binding
properties between the atoms [100].

Likewise essential is the correct consideration of thermal
atomic motions for the calculation of waves and intensities.
It turned out that the consequences are in principle quite
different in holography, conventional imaging and diffraction.
In particular at heavy atoms, the description by means of the
usual Debye—Waller damping factor is insufficient, from the
viewpoint of both the underlying physics and the numerical
results [101].

Interpretation: solution of the inverse problem. Like the
conventional image intensity, the reconstructed object exit-
wave in amplitude and phase represents only the projection
of the object, i.e. a two-dimensional measurement of
object properties with atomic resolution.  Despite this
limitation, the object exit-wave has advantages compared
with the conventionally gained image intensity. Besides the
possibility of correcting coherent aberrations, it might allow
solving the inverse problem of electron scattering, i.e. the
unique three-dimensional determination of atom species and
positions from a two-dimensional object exit-wave. First
attempts for the determination of local tilt and thickness of
the object have already been made [102]. This could be the
foundation for a true three-dimensional reconstruction of the
object structure using a combined holographic/tomographic
acquisition technique also at atomic resolution.

7. Conclusions and outlook

Electron waves are unique in their high sensitivity against
electric and magnetic structures on a length scale reaching
from several micrometres to atomic dimensions. Due to
the highly developed electron optical components such as
sources, lenses and detectors, object information can be
analyzed quantitatively in real space from highly resolved
images, as well as in Fourier space from accurate diffraction
patterns; furthermore, for materials analysis, energy losses
can be analyzed by means of energy spectrometers and
filters at an unrivaled high resolution both in energy and
position. Therefore electron microscopic methods are very
successfully exploited for structure determination and are
hence indispensable for future nanoscience.
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Unfortunately, transmission electron microscopy suffers
from the drawback that the usually recorded intensity images
solely display the squared amplitude (modulus) of the image
wave, but not the phase. Therefore, most interesting items of
the object structure, which are purely encoded in the phase,
are virtually invisible. Consequently, the object information
found in the intensity image is incomplete, which may result
in a misleading interpretation of the findings.

This restriction is overcome by means of electron
holography, which allows recording both amplitude and phase
of the image wave. After about 40 years of development,
electron off-axis holography using the Mollenstedt electron
biprism as beam splitter has reached a very powerful
performance for the analysis of the complete image wave.

Holography is very advantageous, since the reconstructed
wave offers the following advantages over the intensity:

e linearity

e zero loss

e complete analysis in real space and in Fourier space

e a posteriori aberration correction

e intrinsic quantitative evaluation of all data.

The field of applications exploiting the whole wave

information now covers nearly the same range as conventional

TEM. Typical examples of holographic analysis of electric

and magnetic nanofields show the benefits for solid state

physics and materials science. At medium resolution magnetic

and electric fields become accessible, which represent a

new dimension in structure analysis. At atomic resolution

the quantitative interpretation of atomic phase shift allows

determination of atomic species and interatomic fields,

e.g. from ferroelectric dipoles in single unit cells.
Correspondingly, for further dedication, electron hologra-

phy is being improved in several aspects:

o It will be more flexible by adapting the field of view and
lateral resolution to the special needs of the different tasks;
this will be achieved by providing different positions for
the electron biprism along the path of rays.

Increase of the obtainable amount of object information,
given by the number of pixels and the signal/noise ratio,
will be achievable by recording the holograms in most
advanced TEMs, e.g. with electron sources of higher
brightness, and aberration correction. The better the TEM,
the better will be the performance also of holography.
In-situ experiments are under development for a more
unique measurement of the different object data by
variation of corresponding parameters in and around the
object, such as temperature, external fields and mechanical
strain.

Quantitative interpretation in terms of physics needs more
reliable modeling of the object exit wave starting from
the atomic properties. Therefore, ab-initio methods are
increasingly used in areas of electron microscopy and also
in electron holography.

Most interestingly, thanks to the quality of today’s electron
microscopes, electron holography is applicable by everyone,
who carefully operates such a microscope according to the
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state of the art. The needed special hard- and software
is available on the market. Therefore and because of the
high potential for structure determination, the number of
holographic investigations is rapidly growing worldwide. The
future expectations comprehend more detailed and more
precise investigations of e.g. electric, magnetic and mechanic
fields, which are indispensable for understanding the structure—
properties relations of modern materials.
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